1
|
Xu M, Yan JM, Guo L, Wang H, Xu ZX, Yan MY, Lu YL, Gao GY, Li XG, Luo HS, Chai Y, Zheng RK. Nonvolatile Control of the Electronic Properties of In 2-xCr xO 3 Semiconductor Films by Ferroelectric Polarization Charge. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32449-32459. [PMID: 31405273 DOI: 10.1021/acsami.9b07967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of Cr-doped In2-xCrxO3 (ICO) semiconductor thin films were epitaxially grown on (111)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT) single-crystal substrates by the pulsed laser deposition. Upon the application of an electric field to the PMN-0.29PT substrate along the thickness direction, we realized in situ, reversible, and nonvolatile control of the electronic properties and Fermi level of the films, which are manifested by abundant physical phenomena such as the n-type to p-type transformation, metal-semiconductor transition, metal-insulator transition, crossover of the magnetoresistance (MR) from negative to positive, and a large nonvolatile on-and-off ratio of 5.5 × 104% at room temperature. We also strictly disclose that both the sign and the magnitude of MR are determined by the electron carrier density of ICO films, which could modify the s-d exchange interaction and weak localization effect. Our results demonstrate that the ferroelectric gating approach using PMN-PT can be utilized to gain deeper insight into the carrier-density-related electronic properties of In2O3-based semiconductors and provide a simple and energy efficient way to construct multifunctional devices which can utilize the unique properties of composite materials.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian-Min Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Lei Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Hui Wang
- School of Materials Science and Engineering and Jiangxi Key Laboratory for Two-Dimensional Materials and Devices , Nanchang University , Nanchang 330031 , China
| | - Zhi-Xue Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Ming-Yuan Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Yun-Long Lu
- Faculty of Electrical Engineering and Computer Science , Ningbo University , Ningbo 315211 , China
| | - Guan-Yin Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures , University of Science and Technology of China , Hefei 230026 , China
| | - Xiao-Guang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures , University of Science and Technology of China , Hefei 230026 , China
| | - Hao-Su Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Yang Chai
- Department of Applied Physics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| | - Ren-Kui Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- School of Materials Science and Engineering and Jiangxi Key Laboratory for Two-Dimensional Materials and Devices , Nanchang University , Nanchang 330031 , China
| |
Collapse
|