1
|
Li H, Cao S, Zhang S, Chen J, Xu J, Knutson JR. Ultrafast Förster resonance energy transfer from tyrosine to tryptophan in monellin: potential intrinsic spectroscopic ruler. Phys Chem Chem Phys 2023; 25:7239-7250. [PMID: 36853740 DOI: 10.1039/d2cp05842a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Ultrafast Förster Resonance Energy Transfer (FRET) between tyrosine (Tyr) and tryptophan (Trp) residues in the protein monellin has been investigated using picosecond and femtosecond time-resolved fluorescence spectroscopy. Decay associated spectra (DAS) and time-resolved emission spectra (TRES) taken with the different excitation wavelengths of 275, 290 and 295 nm were constructed via global analysis. At two of those three excitation loci (275 and 290 nm), earmarks of energy transfer from Tyr to Trp in monellin are seen, and particularly when the excitation is 275 nm, the energy transfer between Tyr and Trp clearly changes the signature emission DAS shape to that indicating excited state reaction (especially on the red side of fluorescence emission, near 380 nm). Those FRET signatures may overlap with the conventional signatory DAS in heterogeneous systems. When overlap and addition occur between FRET type DAS and "full positive" QSSQ (quasi-static self-quenching), mixed DAS shapes will emerge that still show "positive blue side and negative red sides", just with zero crossing shifted. In addition, excitation decay associated spectra (EDAS) taken with the different emission wavelengths of 330, 350 and 370 nm were constructed. In the study of protein dynamics, ultrafast FRET between Tyr and Trp could provide a basis for an intrinsic (non-perturbing) "spectroscopic ruler", potentially a powerful tool to detect even slight changes in protein structures.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Simin Cao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jay R Knutson
- Laboratory of Advanced Microscopy & Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
2
|
Ray S, Singh N, Patel K, Krishnamoorthy G, Maji SK. FRAP and FRET Investigation of α-Synuclein Fibrillization via Liquid-Liquid Phase Separation In Vitro and in HeLa Cells. Methods Mol Biol 2023; 2551:395-423. [PMID: 36310217 DOI: 10.1007/978-1-0716-2597-2_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid-liquid phase separation (LLPS) acts as an important biological phenomenon in membraneless organelle formation. These phase-separated bodies can also act as nucleation centers for disease-associated amyloid formation. Fluorescence recovery after photobleaching (FRAP) is a crucial technique to analyze the material property (liquid or solid) of protein LLPS. On the other hand, Förster resonance energy transfer (FRET) is used to understand the domain-specific involvement (intermolecular interactions) of protein molecules inside the phase-separated droplets. In this protocol, we delineate mechanisms of liquid-to-solid transition of α-synuclein LLPS by using in vitro and in cell FRAP as well as in vitro FRET techniques.
Collapse
Affiliation(s)
- Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Nitu Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India.
| |
Collapse
|
3
|
Bhattacharjee R, Udgaonkar JB. Differentiating between the sequence of structural events on alternative pathways of folding of a heterodimeric protein. Protein Sci 2022; 31:e4513. [PMID: 36382901 PMCID: PMC9703597 DOI: 10.1002/pro.4513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Distinguishing between competing pathways of folding of a protein, on the basis of how they differ in their progress of structure acquisition, remains an important challenge in protein folding studies. A previous study had shown that the heterodimeric protein, double chain monellin (dcMN) switches between alternative folding pathways upon a change in guanidine hydrochloride (GdnHCl) concentration. In the current study, the folding of dcMN has been characterized by the pulsed hydrogen exchange (HX) labeling methodology used in conjunction with mass spectrometry. Quantification of the extent to which folding intermediates accumulate and then disappear with time of folding at both low and high GdnHCl concentrations, where the folding pathways are known to be different, shows that the folding mechanism is describable by a triangular three-state mechanism. Structural characterization of the productive folding intermediates populated on the alternative pathways has enabled the pathways to be differentiated on the basis of the progress of structure acquisition that occurs on them. The intermediates on the two pathways differ in the extent to which the α-helix and the rest of the β-sheet have acquired structure that is protective against HX. The major difference is, however, that β2 has not acquired any protective structure in the intermediate formed on one pathway, but it has acquired significant protective structure in the intermediate formed on the alternative pathway. Hence, the sequence of structural events is different on the two alternative pathways.
Collapse
Affiliation(s)
- Rupam Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBengaluruKarnatakaIndia
- Indian Institute of Science Education and ResearchPuneMaharashtraIndia
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBengaluruKarnatakaIndia
- Indian Institute of Science Education and ResearchPuneMaharashtraIndia
| |
Collapse
|
4
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
5
|
Bhattacharjee R, Udgaonkar JB. Structural Characterization of the Cooperativity of Unfolding of a Heterodimeric Protein using Hydrogen Exchange-Mass Spectrometry. J Mol Biol 2021; 433:167268. [PMID: 34563547 DOI: 10.1016/j.jmb.2021.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Little is known about how the sequence of structural changes in one chain of a heterodimeric protein is coupled to those in the other chain during protein folding and unfolding reactions, and whether individual secondary structural changes in the two chains occur in one or many coordinated steps. Here, the unfolding mechanism of a small heterodimeric protein, double chain monellin, has been characterized using hydrogen exchange-mass spectrometry. Transient structure opening, which enables HX, was found to be describable by a five state N ↔ I1 ↔ I2 ↔ I3 ↔ U mechanism. Structural changes occur gradually in the first three steps, and cooperatively in the last step. β strands 2, 4 and 5, as well as the α-helix undergo transient unfolding during all three non-cooperative steps, while β1 and the two loops on both sides of the helix undergo transient unfolding during the first two steps. In the absence of GdnHCl, only β3 in chain A of the protein unfolds during the last cooperative step, while in the presence of 1 M GdnHCl, not only β3, but also β2 in chain B unfolds cooperatively. Hence, the extent of cooperative structural change and size of the cooperative unfolding unit increase when the protein is destabilized by denaturant. The naturally evolved two-chain variant of monellin folds and unfolds in a more cooperative manner than does a single chain variant created artificially, suggesting that increasing folding cooperativity, even at the cost of decreasing stability, may be a driving force in the evolution of proteins.
Collapse
Affiliation(s)
- Rupam Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India. https://twitter.com/Rupam_B01
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
6
|
Bhatia S, Krishnamoorthy G, Udgaonkar JB. Resolving Site-Specific Heterogeneity of the Unfolded State under Folding Conditions. J Phys Chem Lett 2021; 12:3295-3302. [PMID: 33764778 DOI: 10.1021/acs.jpclett.1c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the properties of the unfolded state under folding conditions is of fundamental importance for gaining mechanistic insight into folding as well as misfolding reactions. Toward achieving this objective, the folding reaction of a small protein, monellin, has been resolved structurally and temporally, with the use of the multisite time-resolved FRET methodology. The present study establishes that the initial polypeptide chain collapse is not only heterogeneous but also structurally asymmetric and nonuniform. The population-averaged size for the segments spanning parts of the β-sheet decreases much more than that for the α-helix. Multisite measurements enabled specific and nonspecific components of the initial chain collapse to be discerned. The expanded and compact intermediate subensembles have the properties of a nonspecifically collapsed (hence, random-coil-like) and specifically collapsed (hence, globular) polymer, respectively. During subsequent folding, both the subensembles underwent contraction to varying extents at the four monitored segments, which was close to gradual in nature. The expanded intermediate subensemble exhibited an additional very slow contraction, suggestive of the presence of non-native interactions that result in a higher effective viscosity slowing down intrachain motions under folding conditions.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India
- Indian Institute of Science Education and Research, Pune 411 008, India
| | | | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India
- Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
7
|
Bhatia S, Krishnamoorthy G, Udgaonkar JB. Mapping Distinct Sequences of Structure Formation Differentiating Multiple Folding Pathways of a Small Protein. J Am Chem Soc 2021; 143:1447-1457. [PMID: 33430589 DOI: 10.1021/jacs.0c11097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To determine experimentally how the multiple folding pathways of a protein differ, in the order in which the structural parts are assembled, has been a long-standing challenge. To resolve whether structure formation during folding can progress in multiple ways, the complex folding landscape of monellin has been characterized, structurally and temporally, using the multisite time-resolved FRET methodology. After an initial heterogeneous polypeptide chain collapse, structure formation proceeds on parallel pathways. Kinetic analysis of the population evolution data across various protein segments provides a clear structural distinction between the parallel pathways. The analysis leads to a phenomenological model that describes how and when discrete segments acquire structure independently of each other in different subensembles of protein molecules. When averaged over all molecules, structure formation is seen to progress as α-helix formation, followed by core consolidation, then β-sheet formation, and last end-to-end distance compaction. Parts of the protein that are closer in the primary sequence acquire structure before parts separated by longer sequence.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India.,Indian Institute of Science Education and Research, Pune 411 008, India
| | | | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India.,Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
8
|
Exposing the distinctive modular behavior of β-strands and α-helices in folded proteins. Proc Natl Acad Sci U S A 2020; 117:28775-28783. [PMID: 33148805 PMCID: PMC7682573 DOI: 10.1073/pnas.1920455117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although folded proteins are commonly depicted as simplistic combinations of β-strands and α-helices, the actual properties and functions of these secondary-structure elements in their native contexts are just partly understood. The principal reason is that the behavior of individual β- and α-elements is obscured by the global folding cooperativity. In this study, we have circumvented this problem by designing frustrated variants of the mixed α/β-protein S6, which allow the structural behavior of individual β-strands and α-helices to be targeted selectively by stopped-flow kinetics, X-ray crystallography, and solution-state NMR. Essentially, our approach is based on provoking intramolecular "domain swap." The results show that the α- and β-elements have quite different characteristics: The swaps of β-strands proceed via global unfolding, whereas the α-helices are free to swap locally in the native basin. Moreover, the α-helices tend to hybridize and to promote protein association by gliding over to neighboring molecules. This difference in structural behavior follows directly from hydrogen-bonding restrictions and suggests that the protein secondary structure defines not only tertiary geometry, but also maintains control in function and structural evolution. Finally, our alternative approach to protein folding and native-state dynamics presents a generally applicable strategy for in silico design of protein models that are computationally testable in the microsecond-millisecond regime.
Collapse
|
9
|
Structure of an Unfolding Intermediate of an RRM Domain of ETR-3 Reveals Its Native-like Fold. Biophys J 2020; 118:352-365. [PMID: 31866002 DOI: 10.1016/j.bpj.2019.11.3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022] Open
Abstract
Prevalence of one or more partially folded intermediates during protein unfolding with different secondary and ternary conformations has been identified as an integral character of protein unfolding. These transition-state species need to be characterized structurally for elucidation of their folding pathways. We have determined the three-dimensional structure of an intermediate state with increased conformational space sampling under urea-denaturing condition. The protein unfolds completely at 10 M urea but retains residual secondary structural propensities with restricted motion. Here, we describe the native state, observable intermediate state, and unfolded state for ETR-3 RRM-3, which has canonical RRM fold. These observations can shed more light on unfolding events for RRM-containing proteins.
Collapse
|
10
|
Marquezin CA, Ito AS, de Souza ES. Organization and dynamics of NBD-labeled lipids in lipid bilayer analyzed by FRET using the small membrane fluorescent probe AHBA as donor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182995. [DOI: 10.1016/j.bbamem.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 01/22/2023]
|
11
|
Observation of Continuous Contraction and a Metastable Misfolded State during the Collapse and Folding of a Small Protein. J Mol Biol 2019; 431:3814-3826. [DOI: 10.1016/j.jmb.2019.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/22/2023]
|
12
|
Saxena S, Pradeep A, Jayakannan M. Enzyme-Responsive Theranostic FRET Probe Based on l-Aspartic Amphiphilic Polyester Nanoassemblies for Intracellular Bioimaging in Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:5245-5262. [DOI: 10.1021/acsabm.9b00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sonashree Saxena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Anu Pradeep
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
13
|
Unfolded states under folding conditions accommodate sequence-specific conformational preferences with random coil-like dimensions. Proc Natl Acad Sci U S A 2019; 116:12301-12310. [PMID: 31167941 PMCID: PMC7056937 DOI: 10.1073/pnas.1818206116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proteins are marginally stable molecules that fluctuate between folded and unfolded states. Here, we provide a high-resolution description of unfolded states under refolding conditions for the N-terminal domain of the L9 protein (NTL9). We use a combination of time-resolved Förster resonance energy transfer (FRET) based on multiple pairs of minimally perturbing labels, time-resolved small-angle X-ray scattering (SAXS), all-atom simulations, and polymer theory. Upon dilution from high denaturant, the unfolded state undergoes rapid contraction. Although this contraction occurs before the folding transition, the unfolded state remains considerably more expanded than the folded state and accommodates a range of local and nonlocal contacts, including secondary structures and native and nonnative interactions. Paradoxically, despite discernible sequence-specific conformational preferences, the ensemble-averaged properties of unfolded states are consistent with those of canonical random coils, namely polymers in indifferent (theta) solvents. These findings are concordant with theoretical predictions based on coarse-grained models and inferences drawn from single-molecule experiments regarding the sequence-specific scaling behavior of unfolded proteins under folding conditions.
Collapse
|
14
|
Lai JK, Kubelka GS, Kubelka J. Effect of Mutations on the Global and Site-Specific Stability and Folding of an Elementary Protein Structural Motif. J Phys Chem B 2018; 122:11083-11094. [PMID: 29985619 DOI: 10.1021/acs.jpcb.8b05280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the folding mechanism of proteins requires detailed knowledge of the roles of individual amino acid residues in stabilization of specific elements and local segments of the native structure. Recently, we have utilized the combination of circular dichroism (CD) and site-specific 13C isotopically edited infrared spectroscopy (IR) coupled with the Ising-like model for protein folding to map the thermal unfolding at the residue level of a de novo designed helix-turn-helix motif αtα. Here we use the same methodology to study how the sequence of local thermal unfolding is affected by selected mutations introduced into the most and least stable parts of the motif. Seven different mutants of αtα are screened to find substitutions with the most pronounced effects on the overall stability. Subsequently, thermal unfolding of two mutated αtα sequences is studied with site-specific resolution, using four distinct 13C isotopologues of each. The data are analyzed with the Ising-like model, which builds on a previous parametrization for the original αtα sequence and tests different ways of incorporating the amino acid substitution. We show that for both more and less stable mutants only the adjustment of all interaction parameters of the model can yield a satisfactory fit to the experimental data. The stabilizing and destabilizing mutations result, respectively, in a similar increase and decrease of the stability of all probed local segments, irrespective of their position with respect to the mutation site. Consequently, the relative order of their unfolding remains essentially unchanged. These results underline the importance of the interconnectivity of the stabilizing interaction network and cooperativity of the protein structure, which is evident even in a small motif with apparently noncooperative, heterogeneous unfolding. Overall, our findings are consistent with the native structure being the dominant factor in determining the folding mechanism, regardless of the details of its overall or local thermodynamic stabilization.
Collapse
Affiliation(s)
- Jason K Lai
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Ginka S Kubelka
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Jan Kubelka
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| |
Collapse
|
15
|
Narayan A, Naganathan AN. Switching Protein Conformational Substates by Protonation and Mutation. J Phys Chem B 2018; 122:11039-11047. [PMID: 30048131 DOI: 10.1021/acs.jpcb.8b05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein modules that regulate the availability and conformational status of transcription factors determine the rapidity, duration, and magnitude of cellular response to changing conditions. One such system is the single-gene product Cnu, a four-helix bundle transcription co-repressor, which acts as a molecular thermosensor regulating the expression of virulence genes in enterobacteriaceae through modulation of its native conformational ensemble. Cnu and related genes have also been implicated in pH-dependent expression of virulence genes. We hypothesize that protonation of a conserved buried histidine (H45) in Cnu promotes large electrostatic frustration, thus disturbing the H-NS, a transcription factor, binding face. Spectroscopic and calorimetric methods reveal that H45 exhibits a suppressed p Ka of ∼5.1, the protonation of which switches the conformation to an alternate native ensemble in which the fourth helix is disordered. The population redistribution can also be achieved through a mutation H45V, which does not display any switching behavior at pH values greater than 4. The Wako-Saitô-Muñoz-Eaton (WSME) statistical mechanical model predicts specific differences in the conformations and fluctuations of the fourth and first helices of Cnu determining the observed pH response. We validate these predictions through fluorescence lifetime measurements of a sole tryptophan, highlighting the presence of both native and non-native interactions in the regions adjoining the binding face of Cnu. Our combined experimental-computational study thus shows that Cnu acts both as a thermo- and pH-sensor orchestrated via a subtle but quantifiable balance between the weak packing of a structural element and protonation of a buried histidine that promotes electrostatic frustration.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
16
|
|