1
|
Gougoula E, Cummings CN, Xu Y, Lu T, Feng G, Walker NR. Cooperative hydrogen bonding in thiazole⋯(H 2O) 2 revealed by microwave spectroscopy. J Chem Phys 2023; 158:114307. [PMID: 36948828 DOI: 10.1063/5.0143024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Two isomers of a complex formed between thiazole and two water molecules, thi⋯(H2O)2, have been identified through Fourier transform microwave spectroscopy between 7.0 and 18.5 GHz. The complex was generated by the co-expansion of a gas sample containing trace amounts of thiazole and water in an inert buffer gas. For each isomer, rotational constants, A0, B0, and C0; centrifugal distortion constants, DJ, DJK, d1, and d2; and nuclear quadrupole coupling constants, χaa(N) and [χbb(N) - χcc(N)], have been determined through fitting of a rotational Hamiltonian to the frequencies of observed transitions. The molecular geometry, energy, and components of the dipole moment of each isomer have been calculated using Density Functional Theory (DFT). The experimental results for four isotopologues of isomer I allow for accurate determinations of atomic coordinates of oxygen atoms by r0 and rs methods. Isomer II has been assigned as the carrier of an observed spectrum on the basis of very good agreement between DFT-calculated results and a set of spectroscopic parameters (including A0, B0, and C0 rotational constants) determined by fitting to measured transition frequencies. Non-covalent interaction and natural bond orbital analyses reveal that two strong hydrogen bonding interactions are present within each of the identified isomers of thi⋯(H2O)2. The first of these binds H2O to the nitrogen of thiazole (OH⋯N), and the second binds the two water molecules (OH⋯O). A third, weaker interaction binds the H2O sub-unit to the hydrogen atom that is attached to C2 (for isomer I) or C4 (for isomer II) of the thiazole ring (CH⋯O).
Collapse
Affiliation(s)
- Eva Gougoula
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne NE1 7RU, United Kingdom
| | - Charlotte N Cummings
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne NE1 7RU, United Kingdom
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Tao Lu
- School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guiyang 550025, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Nicholas R Walker
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne NE1 7RU, United Kingdom
| |
Collapse
|
2
|
Li J, Wang X, Zhang X, Chen J, Wang H, Tian X, Xu X, Gou Q. Stepwise hydrations of anhydride tuned by hydrogen bonds: rotational study on maleic anhydride-(H 2O) 1-3. Phys Chem Chem Phys 2023; 25:4611-4616. [PMID: 36723184 DOI: 10.1039/d2cp05861h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The rotational spectra of maleic anhydride-(H2O)1-3 have been investigated for the first time by using pulsed jet Fourier transform microwave spectroscopy with complementary computational analyses. The experimental evidence points out that water tends to self-aggregate with hydrogen bonds and form homodromic cycles. Differences in bond lengths and charge distribution between the two carbonyl sites have been observed upon stepwise hydrations, which might further introduce a selectivity on the nucleophilic attack sites of hydrolysis. This study provides an important insight into the incipient solvation process (microsolvation) of maleic anhydride in water by understanding the cooperation and rearrangement of intermolecular hydrogen bonds in its stepwise hydrates.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiujuan Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xinyue Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Junhua Chen
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China. .,School of Pharmacy, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiao Tian
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| |
Collapse
|
3
|
Derbali I, Aroule O, Hoffmann G, Thissen R, Alcaraz C, Romanzin C, Zins EL. On the relevance of the electron density analysis for the study of micro-hydration and its impact on the formation of a peptide-like bond. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Bhikharee D, Elzagheid M, Rhyman L, Ramasami P. Effect of water or ethanol on the tautomeric stability and proton transfer reaction of all possible tautomers of hydantoin: Implicit v/s explicit solvation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Loru D, Steber AL, Pinacho P, Gruet S, Temelso B, Rijs AM, Pérez C, Schnell M. How does the composition of a PAH influence its microsolvation? A rotational spectroscopy study of the phenanthrene–water and phenanthridine–water clusters. Phys Chem Chem Phys 2021; 23:9721-9732. [DOI: 10.1039/d1cp00898f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influence of a nitrogen atom in the backbone of a PAH was revealed by the hydrated clusters of phenanthrene and phenanthridine in a rotational spectroscopy study. Background image credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) – ESA/Hubble Collaboration.
Collapse
Affiliation(s)
- Donatella Loru
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | | | - Pablo Pinacho
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
| | | | - Berhane Temelso
- Division of Information Technology
- College of Charleston
- Charleston
- USA
| | - Anouk M. Rijs
- Division of BioAnalytical Chemistry
- AIMMS Amsterdam Institute of Molecular and Life Sciences
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | | | - Melanie Schnell
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
- Institute of Physical Chemistry
- Christian-Albrechts-Universität zu Kiel
| |
Collapse
|
6
|
Puzzarini C, Spada L, Alessandrini S, Barone V. The challenge of non-covalent interactions: theory meets experiment for reconciling accuracy and interpretation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:343002. [PMID: 32203942 DOI: 10.1088/1361-648x/ab8253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, many gas-phase spectroscopic investigations have focused on the understanding of the nature of weak interactions in model systems. Despite the fact that non-covalent interactions play a key role in several biological and technological processes, their characterization and interpretation are still far from being satisfactory. In this connection, integrated experimental and computational investigations can play an invaluable role. Indeed, a number of different issues relevant to unraveling the properties of bulk or solvated systems can be addressed from experimental investigations on molecular complexes. Focusing on the interaction of biological model systems with solvent molecules (e.g., water), since the hydration of the biomolecules controls their structure and mechanism of action, the study of the molecular properties of hydrated systems containing a limited number of water molecules (microsolvation) is the basis for understanding the solvation process and how structure and reactivity vary from gas phase to solution. Although hydrogen bonding is probably the most widespread interaction in nature, other emerging classes, such as halogen, chalcogen and pnicogen interactions, have attracted much attention because of the role they play in different fields. Their understanding requires, first of all, the characterization of the directionality, strength, and nature of such interactions as well as a comprehensive analysis of their competition with other non-covalent bonds. In this review, it is shown how state-of-the-art quantum-chemical computations combined with rotational spectroscopy allow for fully characterizing intermolecular interactions taking place in molecular complexes from both structural and energetic points of view. The transition from bi-molecular complex to microsolvation and then to condensed phase is shortly addressed.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
| | - Lorenzo Spada
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Silvia Alessandrini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|