1
|
Parker K, Bollis NE, Ryzhov V. Ion-molecule reactions of mass-selected ions. MASS SPECTROMETRY REVIEWS 2024; 43:47-89. [PMID: 36447431 DOI: 10.1002/mas.21819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gas-phase reactions of mass-selected ions with neutrals covers a very broad area of fundamental and applied mass spectrometry (MS). Oftentimes, ion-molecule reactions (IMR) can serve as a viable alternative to collision-induced dissociation and other ion dissociation techniques when using tandem MS. This review focuses on the literature pertaining applications of IMR since 2013. During the past decade considerable efforts have been made in analytical applications of IMR, including advances in one of the major techniques for characterization of unsaturated fatty acids and lipids, ozone-induced dissociation, and the development of a new technique for sequencing of large ions, hydrogen atom attachment/abstraction dissociation. Many advances have also been made in identifying gas-phase chemistry specific to a functional group in organic and biological compounds, which are useful in structure elucidation of analytes and differentiation of isomers/isobars. With "soft" ionization techniques like electrospray ionization having become mainstream for quite some time now, the efforts in the area of metal ion catalysis have firmly moved into exploring chemistry of ligated metal complexes in their "natural" oxidation states allowing to model individual steps of mechanisms in homogeneous catalysis, especially in combination with high-level DFT calculations. Finally, IMR continue to contribute to the body of knowledge in the area of chemistry of interstellar processes.
Collapse
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Nicholas E Bollis
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
2
|
Shiels OJ, Marlton SJP, Trevitt AJ. Protonation Isomer Specific Ion-Molecule Radical Reactions. J Am Chem Soc 2023. [PMID: 37339086 DOI: 10.1021/jacs.3c02552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Through a combination of ion-mobility filtering and laser-equipped quadrupole ion-trap mass spectrometry, the gas-phase reaction kinetics of two protonation isomers of the distonic-radical quinazoline cation are independently measured with ethylene. For these radical addition reactions, protonation site variations drive significant changes in nearby radical reactivity, and this is primarily due to through-space electrostatic effects. Furthermore, quantum chemical methods specifically designed for calculating long-range interactions, such as double-hybrid density functional theory, are required to rationalize the experimentally measured difference in reactivity.
Collapse
Affiliation(s)
- Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Samuel J P Marlton
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, New South Wales, Australia
| |
Collapse
|
3
|
Shiels OJ, Turner JA, Kelly PD, Blanksby S, da Silva G, Trevitt A. Modelling Reaction Kinetics of Distonic Radical Ions: A Systematic Investigation of Phenyl-type Radical Addition to Unsaturated Hydrocarbons. Faraday Discuss 2022; 238:475-490. [DOI: 10.1039/d2fd00045h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas phase ion−molecule reactions are central to chemical processes across many environments. A feature of many of these reactions is an inverse relationship between temperature and reaction rate arising from...
Collapse
|
4
|
Shiels OJ, Kelly PD, Bright CC, Poad BLJ, Blanksby SJ, da Silva G, Trevitt AJ. Reactivity Trends in the Gas-Phase Addition of Acetylene to the N-Protonated Aryl Radical Cations of Pyridine, Aniline, and Benzonitrile. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:537-547. [PMID: 33444019 DOI: 10.1021/jasms.0c00386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N-containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl), and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta, and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios, and reaction efficiencies are measured. The rate coefficients increase from para to ortho positions. The second-order rate coefficients can be sorted into three groups: low, between 1 and 3 × 10-12 cm3 molecule-1 s-1 (3Anl and 4Anl); intermediate, between 5 and 15 × 10-12 cm3 molecule-1 s-1 (2Bzn, 3Bzn, and 4Bzn); and high, between 8 and 31 × 10-11 cm3 molecule-1 s-1 (2Anl, 2Pyr, 3Pyr, and 4Pyr); and 2Anl is the only radical cation with a rate coefficient distinctly different from its isomers. Quantum chemical calculations, using M06-2X-D3(0)/6-31++G(2df,p) geometries and DSD-PBEP86-NL/aug-cc-pVQZ energies, are deployed to rationalize reactivity trends based on the stability of prereactive complexes. The G3X-K method guides the assignment of product ions following adduct formation. The rate coefficient trend can be rationalized by a simple model based on the prereactive complex forward barrier height.
Collapse
Affiliation(s)
- Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - P D Kelly
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Cameron C Bright
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Gabriel da Silva
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Shiels OJ, Kelly PD, Blanksby SJ, da Silva G, Trevitt AJ. Barrierless Reactions of Three Benzonitrile Radical Cations with Ethylene. Aust J Chem 2020. [DOI: 10.1071/ch19606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reactions of three protonated benzonitrile radical cations with ethylene are investigated. Product branching ratios and reaction kinetics, measured using ion-trap mass spectrometry, are reported and mechanisms are developed with support from quantum chemical calculations. Reactions proceed via pre-reactive van der Waals complexes with no energy barrier (above the reactant energy) and form radical addition and addition–elimination product ions. Rate coefficients are 4-dehydrobenzonitrilium: 1.72±0.01×10−11 cm3 molecule−1 s−1, 3-dehydrobenzonitrilium: 1.85±0.01×10−11 cm3 molecule−1 s−1, and 2-dehydrobenzonitrilium: 5.96±0.06×10−11 cm3 molecule−1 s−1 (with±50% absolute uncertainty). A ring-closure mechanism involving the protonated nitrile substituent is proposed for the 2-dehydrobenzonitrilium case and suggests favourable formation of the protonated indenimine cation.
Collapse
|
6
|
Kelly PD, Bright CC, Blanksby SJ, da Silva G, Trevitt AJ. Molecular Weight Growth in the Gas-Phase Reactions of Dehydroanilinium Radical Cations with Propene. J Phys Chem A 2019; 123:8881-8892. [DOI: 10.1021/acs.jpca.9b04088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick D. Kelly
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, Australia
| | - Cameron C. Bright
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, Australia
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane 4001, Australia
| | - Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Adam J. Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, Australia
| |
Collapse
|
7
|
Williams PE, Marshall DL, Poad BLJ, Narreddula VR, Kirk BB, Trevitt AJ, Blanksby SJ. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1848-1860. [PMID: 29869328 DOI: 10.1007/s13361-018-1988-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.
Collapse
Affiliation(s)
- Peggy E Williams
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Failure and Materials Analysis Branch, Flight Systems Division, Naval Surface Warfare Center Crane, Crane, IN, USA
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Venkateswara R Narreddula
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Benjamin B Kirk
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
| | - Adam J Trevitt
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|