1
|
High-intensity ultrasound assisted-emulsification using ionic liquids as novel naturally-derived emulsifiers for food industry applications. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
2
|
Aravena RI, Hallett JP. Protic ionic liquids based on fatty acids: a mixture of ionic and non-ionic molecules. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
3
|
Wu H, Zhang X, Xiong W, Liang J, Zhang S, Hu X, Wu Y. Deep eutectic behavior in binary mixtures of protic ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Toledo Hijo AA, Alves C, Farias FO, Peixoto VS, Meirelles AJ, Santos GH, Maximo GJ. Ionic liquids and deep eutectic solvents as sustainable alternatives for efficient extraction of phenolic compounds from mate leaves. Food Res Int 2022; 157:111194. [DOI: 10.1016/j.foodres.2022.111194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
|
5
|
Desai K, Dharaskar S, Khalid M, Gedam V. Effectiveness of ionic liquids in extractive–oxidative desulfurization of liquid fuels: a review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02038-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Hosseini S, Falahati N, Gutiérrez A, Alavianmehr M, Khalifeh R, Aparicio S. On the properties of N-methyl-2-pyrrolidonium hydrogen sulfate ionic liquid and alkanol mixtures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Toledo Hijo AAC, Barros HDFQ, Maximo GJ, Cazarin CBB, da Costa LBE, Pereira JFB, Maróstica Junior MR, Meirelles AJA. Subacute toxicity assessment of biobased ionic liquids in rats. Food Res Int 2020; 134:109125. [PMID: 32517932 DOI: 10.1016/j.foodres.2020.109125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/21/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022]
Abstract
Ionic liquids (ILs) derived from compounds obtained from natural sources, such as fatty acids (FAs) have attracted the interest of the scientific and industrial communities because of their sustainable appeal and possible low toxic effects or nontoxicity. These aspects open new perspective of applications in other fields, which demands a better comprehension of their toxicity. This work evaluated the subacute toxicity of bis(2-hydroxyethyl)ammonium carboxylates in Wistar rats, considering the alkyl chain length of FAs (capric and oleic acids), and the concentration (0.16%, 1.6% or 3.2%, wIL/wOil) of ILs added in diets. The blood serum of the rats was evaluated in relation to total cholesterol, triglycerides, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and γ-glutamyl transferase. Lipid peroxidation was determined in plasma, liver and kidney tissues by determining the level of thiobarbituric acid reactive substances. Histological analyses of the liver and kidney tissues were performed in order to evaluate morphological changes. No signal of toxicity was observed according to lipid peroxidation. Triglycerides increased with the increasing of the concentration and alkyl chain length of the IL, but no difference in serum level of lipid peroxidation was observed. This behavior may be attributed to the amphiphilic nature of FAs based ILs, which might facilitate lipid digestion. However, more studies are necessary in order to understand such behavior. Therefore, the synthesis of ILs from FAs, has been evaluated as a strategy to produce compounds with low or without toxicity for the agro-food, pharmaceutical or cosmetic industries.
Collapse
Affiliation(s)
- Ariel A C Toledo Hijo
- Laboratory of Extraction, Applied Thermodynamics and Equilibrium (EXTRAE), School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Helena D F Q Barros
- Laboratory of Biological Assays (LEB), School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Guilherme J Maximo
- Laboratory of Extraction, Applied Thermodynamics and Equilibrium (EXTRAE), School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Cinthia B B Cazarin
- Laboratory of Biological Assays (LEB), School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Larissa B E da Costa
- School of Medical Sciences, University of Campinas, R. Tessália Vieira de Camargo, 126, 13083-887 Campinas, São Paulo, Brazil
| | - Jorge F B Pereira
- School of Pharmaceutical Sciences, Universidade Estadual Paulista, 14800-903, Araraquara, São Paulo, Brazil
| | - Mario R Maróstica Junior
- Laboratory of Biological Assays (LEB), School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil
| | - Antonio J A Meirelles
- Laboratory of Extraction, Applied Thermodynamics and Equilibrium (EXTRAE), School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
8
|
Avilés MD, Cao VD, Sánchez C, Arias-Pardilla J, Carrión-Vilches FJ, Sanes J, Kjøniksen AL, Bermúdez MD, Pamies R. Effect of temperature on the rheological behavior of a new aqueous liquid crystal bio-lubricant. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Fatty Acid-Derived Ionic Liquid Lubricant. Protic Ionic Liquid Crystals as Protic Ionic Liquid Additives. COATINGS 2019. [DOI: 10.3390/coatings9110710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fatty acids are natural products which have been studied as green lubricants. Ionic liquids are considered efficient friction reducing and wear preventing lubricants and lubricant additives. Fatty acid-derived ionic liquids have shown potential as neat lubricant and additives. Protic ionic liquid crystals (PILCs) are protic ionic liquids (PILs) where cations and anions form ordered mesophases that show liquid crystalline behavior. The adsorption of carboxylate units on sliding surfaces can enhance the lubricant performance. Ionic liquid crystal lubricants with longer alkyl chains can separate sliding surfaces more efficiently. However, they are usually solid at room temperature and, when used as additives in water, transitions to high friction coefficients and wear rates, with tribocorrosion processes occur when water evaporation takes place at the interface. In order to avoid these inconveniences, in the present work, a protic ammonium palmitate (DPA) ionic liquid crystal has been added in 1 wt.% proportion to a short chain citrate ionic liquid (DCi) with the same protic ammonium cation. A spin coated layer of (DCi + DPA) was deposited on AISI316L steel surface before the sliding test against sapphire ball. Synergy between DCi PIL and DPA PILC additive reduces friction coefficient and wear rate, without tribocorrosion processes, as shown by scanning electron microscopy (SEM)/energy dispersive X-ray microanalysis (EDX) and X-ray photoelectron spectroscopy (XPS) results.
Collapse
|
10
|
Mezzetta A, Łuczak J, Woch J, Chiappe C, Nowicki J, Guazzelli L. Surface active fatty acid ILs: Influence of the hydrophobic tail and/or the imidazolium hydroxyl functionalization on aggregates formation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111155] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Pernak J, Łęgosz B, Klejdysz T, Marcinkowska K, Rogowski J, Kurasiak-Popowska D, Stuper-Szablewska K. Ammonium bio-ionic liquids based on camelina oil as potential novel agrochemicals. RSC Adv 2018; 8:28676-28683. [PMID: 35542470 PMCID: PMC9084345 DOI: 10.1039/c8ra03519a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/04/2018] [Indexed: 11/21/2022] Open
Abstract
Third generation bio-ionic liquids (bio-ILs) were synthesized based on cheap and increasingly available camelina oil.
Collapse
Affiliation(s)
- Juliusz Pernak
- Poznan Univeristy of Technology
- Faculty of Chemical Technology
- 60-965 Poznań
- Poland
| | - Bartosz Łęgosz
- Poznan Univeristy of Technology
- Faculty of Chemical Technology
- 60-965 Poznań
- Poland
| | - Tomasz Klejdysz
- Institute of Plant Protection – National Research Institute
- 60-101 Poznań
- Poland
| | | | - Jacek Rogowski
- Institute of Plant Protection – National Research Institute
- 60-101 Poznań
- Poland
| | | | | |
Collapse
|