1
|
Jiang X, Liu L, Peng Y, Zhu H. A New Ab Initio Potential Energy Surface and Rovibrational Spectra for the CO-N 2O Complex. J Phys Chem A 2024; 128:2743-2751. [PMID: 38557005 DOI: 10.1021/acs.jpca.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We constructed a new ab initio potential energy surface (PES) for CO-N2O which includes the intramolecular Q3 normal coordinate for the N2O ν3 antisymmetric stretching vibration. The intermolecular potential was evaluated employing the supermolecular method at the [CCSD(T)]-F12a level, with the aug-cc-pVTZ basis set plus bond functions. By integral over the intramolecular Q3 coordinate, we obtained the vibrationally averaged PESs for the CO-N2O system in the ground and ν3 excited states of N2O. Each PES features one nearly T-shaped global minimum and one skewed T-shaped local minimum. Based on these obtained PESs of CO-N2O, the radial discrete variable representation/angle finite base representation method and the Lanczos algorithm were applied for the calculations of bound states and rovibrational energy levels. The calculated ν3 vibrational band origin shift of the N2O monomer in CO-N2O is 2.7570 cm-1, matching well with the observed value of 2.9048 cm-1. The computed microwave and infrared transition frequencies, as well as the rotational parameters, are consistent with the experimental observations.
Collapse
Affiliation(s)
- Xuedan Jiang
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Liu
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yang Peng
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hua Zhu
- School of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Li Y, Zhai Y, Li H. MLRNet: Combining the Physics-Motivated Potential Models with Neural Networks for Intermolecular Potential Energy Surface Construction. J Chem Theory Comput 2023; 19:1421-1431. [PMID: 36826225 DOI: 10.1021/acs.jctc.2c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A physics-based machine learning model called MLRNet has been developed to construct the high-accuracy two-body intermolecular potential energy surface (IPES). The outputs of the neural network are integrated into the physically realistic Morse/long-range (MLR) function, which ensures that the MLRNet has meaningful extrapolation at both short and long ranges and solves the asymptotic problem in common neural network potential (NNP) models. The neural network representation of the MLR parameters is more flexible and more efficient than the polynomial expansion in the conventional mdMLR model, especially for systems containing nonrigid monomer(s). The present work illustrates the basic framework of the current MLRNet model, including (i) how to combine the physically meaningful MLR function with different possible NN structures, (ii) the preservation of permutation symmetry, and (iii) the predetermination of the long-range function uLR. We choose two realistic systems to demonstrate the performance of MLRNet: the three-dimensional IPES of CO2-He including the CO2 antisymmetric vibration Q3 and the six-dimensional IPES of the H2O-Ar system. In both cases, the fitting errors of the MLRNet are several times smaller than those of the conventional mdMLR model. Both short-range and long-range extrapolation tests were performed to illustrate the extrapolation ability of the MLRNet and its damping function version. Moreover, for the 6-D H2O-Ar system, the MLRNet only needs 1596 trainable parameters, which is almost equal to the number needed for the 5-D mdMLR model (1509) and half that needed for the PIP-NN model (3501) within similar accuracy, which illustrates the model efficiency in high-dimensional IPES fitting.
Collapse
Affiliation(s)
- You Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| |
Collapse
|
3
|
Jiang J, Zhu B, Jiang X, Lu B, Zeng X. Photochemistry of phosphenic chloride (ClPO 2): isomerization with chlorine metaphosphite (ClOPO) and reduction by carbon monoxide. Phys Chem Chem Phys 2022; 24:20828-20836. [PMID: 36040114 DOI: 10.1039/d2cp02986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphenic chloride (ClPO2) is an elusive congener of nitryl chloride (ClNO2). By high-vacuum flash pyrolysis of 2-chloro-1,3,2-dioxaphospholane in the gas phase, ClPO2 has been efficiently generated and subsequently isolated in cryogenic N2, Ar, and CO matrices (10 K) for a first time study on its photochemistry. Upon 193 nm laser irradiation, ClPO2 isomerizes to the novel chlorine metaphosphite (ClOPO) by initial cleavage of the Cl-P bond (→ ˙Cl + ˙PO2) with subsequent Cl-O bond formation inside the N2 and Ar matrix cages. The reverse transformation becomes feasible under further irradiation at 266 nm. This photochemistry is consistent with the observed absorptions of ClPO2 and ClOPO at 207 and 250 nm, respectively. When the photolysis was performed in solid CO ice, no isomerization occurs due to CO-trapping of the initially generated ˙Cl atoms by forming caged radical pair ClCO˙⋯˙PO2. Concomitantly, photolytic reduction of ClPO2 to ClPO by CO has been observed, yielding a weakly bonded molecular complex consisting of ClPO and CO2 bonded through short intermolecular C⋯O contact (2.910 Å). The characterization of ClPO, ClPO2, ClOPO, and the molecular complexes of ClPO2-CO and ClPO-CO2 using matrix-isolation IR and UV-vis spectroscopy is supported by the theoretical calculations at the B3LYP/6-311 + G(3df) level, and the photochemistry of ClPO2 is also compared with the revisited photochemistry of ClNO2 in the N2-matrix.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Bifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Xu S, Li Y, Wang D, Fang C, Luo C, Deng J, Hu L, Li H, Li H. Efficient prediction for high precision CO-N 2 potential energy surface by stacking ensemble DNN. J Comput Chem 2022; 43:244-254. [PMID: 34786734 DOI: 10.1002/jcc.26785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/06/2022]
Abstract
High-dimensional potential energy surface (PES) for van der Waals systems with spectroscopic accuracy, is of great importance for quantum dynamics and an extremely challenge job. CO-N2 is a typical van der Waals system and its high-precision PES may help elucidate weak interaction mechanisms. Taking CO-N2 potential energies calculated by CCSD(T)-F12b/aug-cc-pVQZ as the benchmark, we establish an accurate, robust, and efficient machine learning model by using only four molecular structure descriptors based on 7966 benchmark potential energies. The highest accuracy is obtained by a stacking ensemble DNN (SeDNN). Its evaluation parameters MAE, RMSE, and R2 reach 0.096, 0.163, 0.9999 cm-1 , respectively, and the spectroscopic accuracy for vibration spectrum is achieved with predicted PES, which shows SeDNN superior goodness-of-fit and prediction performance. An elaborated PES with the reported global minimum has been predicted with the model, which perfectly reproduces CCSD(T) potential energies and the analytical MLR PES [PCCP, 2018, 20, 2036]. The critical points (global minimum, TSI, TSII, and their barriers), potential curve, and entire PES profile are remarkably consistent with CCSD(T) calculations. To further improve the usability of constructing PESs in practice, the size of the training set (energy points) for the model is reduced to 50%, 30%, and 20% of the database, respectively. The results show that even training with the smallest training set (1593 points), the PES only differs 2.555 cm-1 with the analytic MLR PES. Therefore, the proposed SeDNN is promisingly an alternative efficient tool to construct subtle PES for van der Waals systems.
Collapse
Affiliation(s)
- Shanshan Xu
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - You Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Donghan Wang
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Chao Fang
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Chengwei Luo
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Jiankun Deng
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - LiHong Hu
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Hongzhi Li
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| |
Collapse
|
5
|
Hong Q, Bartolomei M, Coletti C, Lombardi A, Sun Q, Pirani F. Vibrational Energy Transfer in CO+N 2 Collisions: A Database for V-V and V-T/R Quantum-Classical Rate Coefficients. Molecules 2021; 26:molecules26237152. [PMID: 34885730 PMCID: PMC8659027 DOI: 10.3390/molecules26237152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of energy exchange rate constants in inelastic collisions is critically required for accurate characterization and simulation of several processes in gaseous environments, including planetary atmospheres, plasma, combustion, etc. Determination of these rate constants requires accurate potential energy surfaces (PESs) that describe in detail the full interaction region space and the use of collision dynamics methods capable of including the most relevant quantum effects. In this work, we produce an extensive collection of vibration-to-vibration (V-V) and vibration-to-translation/rotation (V-T/R) energy transfer rate coefficients for collisions between CO and N2 molecules using a mixed quantum-classical method and a recently introduced (A. Lombardi, F. Pirani, M. Bartolomei, C. Coletti, and A. Laganà, Frontiers in chemistry, 7, 309 (2019)) analytical PES, critically revised to improve its performance against ab initio and experimental data of different sources. The present database gives a good agreement with available experimental values of V-V rate coefficients and covers an unprecedented number of transitions and a wide range of temperatures. Furthermore, this is the first database of V-T/R rate coefficients for the title collisions. These processes are shown to often be the most probable ones at high temperatures and/or for highly excited molecules, such conditions being relevant in the modeling of hypersonic flows, plasma, and aerospace applications.
Collapse
Affiliation(s)
- Qizhen Hong
- State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (Q.H.); (Q.S.)
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. d’Annunzio Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
- Correspondence:
| | - Andrea Lombardi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, I-06183 Perugia, Italy; (A.L.); (F.P.)
| | - Quanhua Sun
- State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (Q.H.); (Q.S.)
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, I-06183 Perugia, Italy; (A.L.); (F.P.)
| |
Collapse
|
6
|
Jóźwiak H, Thibault F, Cybulski H, Wcisło P. Ab initio investigation of the CO-N 2 quantum scattering: The collisional perturbation of the pure rotational R(0) line in CO. J Chem Phys 2021; 154:054314. [PMID: 33557563 DOI: 10.1063/5.0040438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report fully quantum calculations of the collisional perturbation of a molecular line for a system that is relevant for Earth's atmosphere. We consider the N2-perturbed pure rotational R(0) line in CO. The results agree well with the available experimental data. This work constitutes a significant step toward populating the spectroscopic databases with ab initio collisional line-shape parameters for atmosphere-relevant systems. The calculations were performed using three different recently reported potential energy surfaces (PESs). We conclude that all three PESs lead to practically the same values of the pressure broadening coefficients.
Collapse
Affiliation(s)
- Hubert Jóźwiak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Franck Thibault
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes F-35000, France
| | - Hubert Cybulski
- Institute of Physics, Kazimierz Wielki University, ul. Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland
| | - Piotr Wcisło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
7
|
Hou D, Yang JT, Zhai Y, Zhang XL, Liu JM, Li H. Analytic intermolecular potential energy surface and first-principles prediction of the rotational profiles for a symmetric top ion-atom complex: A case study of H 3O +-Ar. J Chem Phys 2020; 152:214302. [PMID: 32505168 DOI: 10.1063/5.0007691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We presented the first three-dimensional (3D) ab initio intermolecular potential energy surface (PES) for the H3O+-Ar complex. The electronic structure computations were carried out at the explicitly correlated coupled cluster theory-F12 with an augmented correlation-consistent triple zeta basis set. Analytic 3D PES was obtained by least-squares fitting the multi-dimensional Morse/Long-Range (mdMLR) potential model to interaction energies, where the mdMLR function form was applied to the nonlinear ion-atom case for the first time. The 3D PES fitting to 1708 points has root-mean-square deviations of 0.19 cm-1 with only 108 parameters for interaction energies less than 500 cm-1. With the 3D PES of the H3O+-Ar complex, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. The rotational profiles of the O-H anti-stretching vibrational bands of v3 +(S)←0+ and v3 -(A)←0- for the H3O+-Ar complex were predicted and were in good agreement with the experimental results.
Collapse
Affiliation(s)
- Dan Hou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Ji-Tai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Xiao-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Jing-Min Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| |
Collapse
|
8
|
Kodrycka M, Patkowski K. Platinum, gold, and silver standards of intermolecular interaction energy calculations. J Chem Phys 2019; 151:070901. [DOI: 10.1063/1.5116151] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Monika Kodrycka
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| |
Collapse
|
9
|
Zhang XL, Ma YT, Zhai Y, Li H. Full quantum calculation of the rovibrational states and intensities for a symmetric top-linear molecule dimer: Hamiltonian, basis set, and matrix elements. J Chem Phys 2019; 151:074301. [PMID: 31438702 DOI: 10.1063/1.5115496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rovibrational energy levels and intensities of the CH3F-H2 dimer have been obtained using our recent global intermolecular potential energy surface [X.-L. Zhang et al., J. Chem. Phys. 148, 124302 (2018)]. The Hamiltonian, basis set, and matrix elements are derived and given for a symmetric top-linear molecule complex. This approach to the generation of energy levels and wavefunctions can readily be utilized for studying the rovibrational spectra of other van der Waals complexes composed of a symmetric top molecule and a linear molecule, and may readily be extended to other complexes of nonlinear molecules and linear molecules. To confirm our method, the rovibrational levels of the H2O-H2 dimer have been computed and shown to be in good agreement with experiment and with previous theoretical results. The rovibrational Schrödinger equation has been solved using a Lanczos algorithm together with an uncoupled product basis set. As expected, dimers containing ortho-H2 are more strongly bound than dimers containing para-H2. Energies and wavefunctions of the discrete rovibrational levels of CH3F-paraH2 complexes obtained from the direct vibrationally averaged 5-dimensional potentials are in good agreement with the results of the reduced 3-dimensional adiabatic-hindered-rotor (AHR) approximation. Accurate calculations of the transition line strengths for the orthoCH3F-paraH2 complex are also carried out, and are consistent with results obtained using the AHR approximation. The microwave spectrum associated with the orthoCH3F-orthoH2 dimer has been predicted for the first time.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yong-Tao Ma
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
10
|
Barclay AJ, Esteki K, Michaelian KH, McKellar ARW, Moazzen-Ahmadi N. Infrared bands of CS 2 dimer and trimer at 4.5 μm. J Chem Phys 2019; 150:144305. [PMID: 30981255 DOI: 10.1063/1.5091508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report observation of new infrared bands of (CS2)2 and (CS2)3 in the region of the CS2 ν1 + ν3 combination band (at 4.5 µm) using a quantum cascade laser. The complexes are formed in a pulsed supersonic slit-jet expansion of a gas mixture of carbon disulfide in helium. We have previously shown that the most stable isomer of (CS2)2 is a cross-shaped structure with D2d symmetry and that for (CS2)3 is a barrel-shaped structure with D3 symmetry. The dimer has one doubly degenerate infrared-active band in the ν1 + ν3 region of the CS2 monomer. This band is observed to have a rather small vibrational shift of -0.844 cm-1. We expect one parallel and one perpendicular infrared-active band for the trimer but observe two parallel bands and one perpendicular band. Much larger vibrational shifts of -8.953 cm-1 for the perpendicular band and -8.845 cm-1 and +16.681 cm-1 for the parallel bands are observed. Vibrational shifts and possible vibrational assignments, in the case of the parallel bands of the trimer, are discussed using group theoretical arguments.
Collapse
Affiliation(s)
- A J Barclay
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - K Esteki
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - K H Michaelian
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Suite A202, Devon, Alberta T9G 1A8, Canada
| | - A R W McKellar
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - N Moazzen-Ahmadi
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Huang J, Zhou Y, Xie D. Predicted infrared spectra in the HF stretching band of the H 2-HF complex. J Chem Phys 2018; 149:094307. [PMID: 30195303 DOI: 10.1063/1.5046359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The infrared spectra with hydrogen fluoride (HF) and deuterium fluoride (DF) (v2 = 1 ← 0) for eight isotropic species of H2-HF complex are predicted, based on our newly constructed high-accuracy ab initio potential energy surface [D. Yang et al., J. Chem. Phys. 148, 184301 (2018)]. The radial discrete variable representation/angular finite basis representation method and Lanczos algorithm were used to determine the ro-vibrational energy levels and wave functions for eight species of H2-HF complex (para-H2-HF, ortho-H2-HF, para-D2-HF, ortho-D2-HF, para-H2-DF, ortho-H2-DF, para-D2-DF, and ortho-D2-DF) with separating the inter- and intra-molecular vibrations. Bound states properties including their dissociation energies and rotational constants were presented. The calculated band origins are all red shifted to the isolated HF molecule and in good agreement with available experimental values. The frequencies and line intensities of ro-vibrational transitions in the HF stretching band were further calculated, and the predicted infrared spectra are consistent with available observed spectra. Among them, the spectra for three isotopic species of H2-HF (para-H2-DF, para-D2-DF, and ortho-D2-DF) were predicted for the first time.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Zhang XL, Ma YT, Zhai Y, Li H. Analytic Morse/long-range potential energy surfaces and "adiabatic-hindered-rotor" treatment for a symmetric top-linear molecule dimer: A case study of CH 3F-H 2. J Chem Phys 2018; 148:124302. [PMID: 29604839 DOI: 10.1063/1.5024451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A first effective six-dimensional ab initio potential energy surface (PES) for CH3F-H2 which explicitly includes the intramolecular Q3 stretching normal mode of the CH3F monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster level of theory [CCSD(T)-F12a] with an augmented correlation-consistent triple zeta basis set. Five-dimensional analytical intermolecular PESs for ν3(CH3F) = 0 and 1 are then obtained by fitting the vibrationally averaged potentials to the Morse/Long-Range (MLR) potential function form. The MLR function form is applied to the nonlinear molecule-linear molecule case for the first time. These fits to 25 015 points have root-mean-square deviations of 0.74 cm-1 and 0.082 cm-1 for interaction energies less than 0.0 cm-1. Using the adiabatic hindered-rotor approximation, three-dimensional PESs for CH3F-paraH2 are generated from the 5D PESs over all possible orientations of the hydrogen monomer. The infrared and microwave spectra for CH3F-paraH2 dimer are predicted for the first time. These analytic PESs can be used for modeling the dynamical behavior in CH3F-(H2)N clusters, including the possible appearance of microscopic superfluidity.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Yong-Tao Ma
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| |
Collapse
|
13
|
Cybulski H, Henriksen C, Dawes R, Wang XG, Bora N, Avila G, Carrington T, Fernández B. Ab initio study of the CO–N2 complex: a new highly accurate intermolecular potential energy surface and rovibrational spectrum. Phys Chem Chem Phys 2018; 20:12624-12636. [DOI: 10.1039/c8cp01373j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a highly accurate ab initio intermolecular potential-energy surface and rovibrational spectrum for the CO–N2 complex.
Collapse
Affiliation(s)
- Hubert Cybulski
- Institute of Physics
- Faculty of Physics
- Astronomy and Informatics
- Nicolaus Copernicus University in Torun
- 87-100 Torun
| | - Christian Henriksen
- Department of Applied Mathematics and Computer Science
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Richard Dawes
- Missouri University of Science and Technology
- Rolla
- USA
| | | | - Neha Bora
- Chemistry Department
- Queen's University
- Kingston
- Canada
| | - Gustavo Avila
- Chemistry Department
- Queen's University
- Kingston
- Canada
| | | | - Berta Fernández
- Department of Physical Chemistry
- University of Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| |
Collapse
|