1
|
Solé-Daura A, Maseras F. Straightforward computational determination of energy-transfer kinetics through the application of the Marcus theory. Chem Sci 2024:d4sc03352c. [PMID: 39149213 PMCID: PMC11322899 DOI: 10.1039/d4sc03352c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Energy transfer (EnT) photocatalysis holds the potential to revolutionize synthetic chemistry, unlocking the excited-state reactivity of non-chromophoric compounds via indirect sensitization. This strategy gives access to synthetic routes to valuable molecular scaffolds that are otherwise inaccessible through ground-state pathways. Despite the promising nature of this chemistry, it still represents a largely uncharted area for computational chemistry, hindering the development of structure-activity relationships and design rules to rationally exploit the potential of EnT photocatalysis. Here, we examined the application of the classical Marcus theory in combination with DFT calculations as a convenient strategy to estimate the kinetics of EnT processes, focusing on the indirect sensitization of alkenes recently reported by Gilmour, Kerzig and co-workers for subsequent isomerization [Zähringer et al., J. Am. Chem. Soc., 2023, 145, 21576]. Our results demonstrate a remarkable capability of this approach to estimate free-energy barriers for EnT processes with high accuracy, yielding precise qualitative assessments and quantitative predictions with typical discrepancies of less than 2 kcal mol-1 compared to experimental values and a small mean average error (MAE) of 1.2 kcal mol-1.
Collapse
Affiliation(s)
- Albert Solé-Daura
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 43007 Tarragona Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
2
|
Rubert-Albiol R, Cerdá J, Calbo J, Cupellini L, Ortí E, Aragó J. Theoretical description of photoinduced electron transfer in donor-acceptor supramolecular complexes based on carbon buckybowls. J Chem Phys 2024; 161:014304. [PMID: 38953447 DOI: 10.1063/5.0215339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Herein, we explore, from a theoretical perspective, the nonradiative photoinduced processes (charge separation and energy transfer) within a family of donor-acceptor supramolecular complexes based on the electron-donor truxene-tetrathiafulvalene (truxTTF) derivative and a series of curved fullerene fragments (buckybowls) of different shapes and sizes (C30H12, C32H12, and C38H14) as electron acceptors that successfully combine with truxTTF via non-covalent interactions. The resulting supramolecular complexes (truxTTF·C30H12, truxTTF·C32H12, and truxTTF·C38H14) undergo charge-separation processes upon photoexcitation through charge-transfer states involving the donor and acceptor units. Despite the not so different size of the buckybowls, they present noticeable differences in the charge-separation efficiency owing to a complex decay post-photoexcitation mechanism involving several low-lying excited states of different natures (local and charge-transfer excitations), all closely spaced in energy. In this intricate scenario, we have adopted a theoretical approach combining electronic structure calculations at (time-dependent) density functional theory, a multistate multifragment diabatization method, the Marcus-Levitch-Jortner semiclassical rate expression, and a kinetic model to estimate the charge separation rate constants of the supramolecular heterodimers. Our outcomes highlight that the efficiency of the photoinduced charge-separation process increases with the extension of the buckybowl backbone. The supramolecular heterodimer with the largest buckybowl (truxTTF·C38H14) displays multiple and efficient electron-transfer pathways, providing a global photoinduced charge separation in the ultrafast time scale in line with the experimental findings. The study reported indicates that modifications in the shape and size of buckybowl systems can give rise to attractive novel acceptors for potential photovoltaic applications.
Collapse
Affiliation(s)
- Raquel Rubert-Albiol
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Jesús Cerdá
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
- Laboratory for Chemistry of Novel Materials, Université de Mons, Mons 7000, Belgium
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| |
Collapse
|
3
|
Giannini S, Peng WT, Cupellini L, Padula D, Carof A, Blumberger J. Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization. Nat Commun 2022; 13:2755. [PMID: 35589694 PMCID: PMC9120088 DOI: 10.1038/s41467-022-30308-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, an efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrödinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials.
Collapse
Affiliation(s)
- Samuele Giannini
- Department of Physics and Astronomy and Thomas Young Centre, University College London, WC1E 6BT, London, UK.
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000, Mons, Belgium.
| | - Wei-Tao Peng
- Department of Physics and Astronomy and Thomas Young Centre, University College London, WC1E 6BT, London, UK
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Universitá di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Antoine Carof
- Laboratoire de Physique et Chimie Théoriques, CNRS, UMR No. 7019, Université de Lorraine, BP 239, 54506, Vandoeuvre-lés-Nancy Cedex, France
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, WC1E 6BT, London, UK.
| |
Collapse
|
4
|
Nottoli M, Cupellini L, Lipparini F, Granucci G, Mennucci B. Multiscale Models for Light-Driven Processes. Annu Rev Phys Chem 2021; 72:489-513. [PMID: 33561359 DOI: 10.1146/annurev-physchem-090419-104031] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiscale models combining quantum mechanical and classical descriptions are a very popular strategy to simulate properties and processes of complex systems. Many alternative formulations have been developed, and they are now available in all of the most widely used quantum chemistry packages. Their application to the study of light-driven processes, however, is more recent, and some methodological and numerical problems have yet to be solved. This is especially the case for the polarizable formulation of these models, the recent advances in which we review here. Specifically, we identify and describe the most important specificities that the polarizable formulation introduces into both the simulation of excited-state dynamics and the modeling of excitation energy and electron transfer processes.
Collapse
Affiliation(s)
- Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy;
| |
Collapse
|
5
|
Cupellini L, Wityk P, Mennucci B, Rak J. Photoinduced electron transfer in 5-bromouracil labeled DNA. A contrathermodynamic mechanism revisited by electron transfer theories. Phys Chem Chem Phys 2019; 21:4387-4393. [PMID: 30729242 DOI: 10.1039/c8cp07700b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of the 5-bromouracil (BrU) based photosensitization mechanism of DNA damage is of large interest due to the potential applications in photodynamic therapy. Photoinduced electron transfer (ET) in BrU labeled duplexes comprising the 5'-GBrU or 5'-ABrU sequence showed that a much lower reactivity was found for the 5'-GBrU pattern. Since the ionization potential of G is lower than that of A, this sequence selectivity has been dubbed a contrathermodynamic one. In the current work, we employ the Marcus and Marcus-Levich-Jortner theory of ET in order to shed light on the observed effect. By using a combination of Density Functional Theory (DFT) and solvation continuum models, we calculated the electronic couplings, reorganization energies, and thermodynamic stimuli for electron transfer which enabled the rates of forward and back ET to be estimated for the two considered sequences. The calculated rates show that the photoreaction could not be efficient if the ET process proceeded within the considered dimers. Only after introducing additional adenines between G and BrU, which accelerates the forward and slows down the back ET, is a significant amount of photodamage expected.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | | | | | | |
Collapse
|
6
|
Lu XJ, Zhang CR, Shen YL, Wu YZ, Liu ZJ, Chen HS. The electronic structures and excitation properties of three meso-pentafluorophenyl substituted zinc porphyrin–fullerene dyad. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|