1
|
Jia X, Xin Z, Fu Y, Duan H. Theoretical Investigation into Polymorphic Transformation between β-HMX and δ-HMX by Finite Temperature String. Molecules 2024; 29:4819. [PMID: 39459188 PMCID: PMC11510520 DOI: 10.3390/molecules29204819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Polymorphic transformation is important in chemical industries, in particular, in those involving explosive molecular crystals. However, due to simulating challenges in the rare event method and collective variables, understanding the transformation mechanism of molecular crystals with a complex structure at the molecular level is poor. In this work, with the constructed order parameters (OPs) and K-means clustering algorithm, the potential of mean force (PMF) along the minimum free-energy path connecting β-HMX and δ-HMX was calculated by the finite temperature string method in the collective variables (SMCV), the free-energy profile and nucleation kinetics were obtained by Markovian milestoning with Voronoi tessellations, and the temperature effect on nucleation was also clarified. The barriers of transformation were affected by the finite-size effects. The configuration with the lower potential barrier in the PMF corresponded to the critical nucleus. The time and free-energy barrier of the polymorphic transformation were reduced as the temperature increased, which was explained by the pre-exponential factor and nucleation rate. Thus, the polymorphic transformation of HMX could be controlled by the temperatures, as is consistent with previous experimental results. Finally, the HMX polymorph dependency of the impact sensitivity was discussed. This work provides an effective way to reveal the polymorphic transformation of the molecular crystal with a cyclic molecular structure, and further to prepare the desired explosive by controlling the transformation temperature.
Collapse
Affiliation(s)
- Xiumei Jia
- School of Innovation and Entrepreneurship, North University of China, Taiyuan 030051, China
| | - Zhendong Xin
- Department of Admission and Employment, North University of China, Taiyuan 030051, China;
| | - Yizheng Fu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; (Y.F.); (H.D.)
| | - Hongji Duan
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; (Y.F.); (H.D.)
| |
Collapse
|
2
|
Niu SJ, Ren FD. Finite Temperature String with Order Parameter as Collective Variables for Molecular Crystal: A Case of Polymorphic Transformation of TNT under External Electric Field. Molecules 2024; 29:2549. [PMID: 38893427 PMCID: PMC11173574 DOI: 10.3390/molecules29112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
An external electric field is an effective tool to induce the polymorphic transformation of molecular crystals, which is important practically in the chemical, material, and energy storage industries. However, the understanding of this mechanism is poor at the molecular level. In this work, two types of order parameters (OPs) were constructed for the molecular crystal based on the intermolecular distance, bond orientation, and molecular orientation. Using the K-means clustering algorithm for the sampling of OPs based on the Euclidean distance and density weight, the polymorphic transformation of TNT was investigated using a finite temperature string (FTS) under external electric fields. The potential of mean force (PMF) was obtained, and the essence of the polymorphic transformation between o-TNT and m-TNT was revealed, which verified the effectiveness of the FTS method based on K-means clustering to OPs. The differences in PMFs between the o-TNT and transition state were decreased under external electric fields in comparison with those in no field. The fields parallel to the c-axis obviously affected the difference in PMF, and the relationship between the changes in PMFs and field strengths was found. Although the external electric field did not promote the convergence, the time of the polymorphic transformation was reduced under the external electric field in comparison to its absence. Moreover, under the external electric field, the polymorphic transformation from o-TNT to m-TNT occurred while that from m-TNT to o-TNT was prevented, which was explained by the dipole moment of molecule, relative permittivity, chemical potential difference, nucleation work and nucleation rate. This confirmed that the polymorphic transformation orientation of the molecular crystal could be controlled by the external electric field. This work provides an effective way to explore the polymorphic transformation of the molecular crystals at a molecular level, and it is useful to control the production process and improve the performance of energetic materials by using the external electric fields.
Collapse
Affiliation(s)
- Shi-Jie Niu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China;
- School of Management, Wuhan Polytechnic University, Wuhan 430040, China
| | - Fu-De Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China;
| |
Collapse
|
3
|
Jakub Z, Shahsavar A, Planer J, Hrůza D, Herich O, Procházka P, Čechal J. How the Support Defines Properties of 2D Metal-Organic Frameworks: Fe-TCNQ on Graphene versus Au(111). J Am Chem Soc 2024; 146:3471-3482. [PMID: 38253402 PMCID: PMC10859937 DOI: 10.1021/jacs.3c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111). We show that the Fe-TCNQ on graphene is nonplanar with iron in quasi-tetrahedral sites, but on Au(111) it is planarized by stronger van der Waals interaction. The differences in physical and electronic structures result in distinct properties of the supported 2D MOFs. The dz2 center position is shifted by 1.4 eV between Fe sites on the two supports, and dramatic differences in chemical reactivity are experimentally identified using a TCNQ probe molecule. These results outline the limitations of common on-surface approaches using metal supports and show that the intrinsic MOF properties can be partially retained on graphene.
Collapse
Affiliation(s)
- Zdeněk Jakub
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Azin Shahsavar
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Jakub Planer
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Dominik Hrůza
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Ondrej Herich
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Pavel Procházka
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Jan Čechal
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 61200,Czech Republic
| |
Collapse
|
4
|
Ren FD, Liu YZ, Ding KW, Chang LL, Cao DL, Liu S. Finite temperature string by K-means clustering sampling with order parameters as collective variables for molecular crystals: application to polymorphic transformation between β-CL-20 and ε-CL-20. Phys Chem Chem Phys 2024; 26:3500-3515. [PMID: 38206084 DOI: 10.1039/d3cp05389j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Polymorphic transformation of molecular crystals is a fundamental phase transition process, and it is important practically in the chemical, material, biopharmaceutical, and energy storage industries. However, understanding of the transformation mechanism at the molecular level is poor due to the extreme simulating challenges in enhanced sampling and formulating order parameters (OPs) as the collective variables that can distinguish polymorphs with quite similar and complicated structures so as to describe the reaction coordinate. In this work, two kinds of OPs for CL-20 were constructed by the bond distances, bond orientations and relative orientations. A K-means clustering algorithm based on the Euclidean distance and sample weight was used to smooth the initial finite temperature string (FTS), and the minimum free energy path connecting β-CL-20 and ε-CL-20 was sketched by the string method in collective variables, and the free energy profile along the path and the nucleation kinetics were obtained by Markovian milestoning with Voronoi tessellations. In comparison with the average-based sampling, the K-means clustering algorithm provided an improved convergence rate of FTS. The simulation of transformation was independent of OP types but was affected greatly by finite-size effects. A surface-mediated local nucleation mechanism was confirmed and the configuration located at the shoulder of potential of mean force, rather than overall maximum, was confirmed to be the critical nucleus formed by the cooperative effect of the intermolecular interactions. This work provides an effective way to explore the polymorphic transformation of caged molecular crystals at the molecular level.
Collapse
Affiliation(s)
- Fu-de Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Ying-Zhe Liu
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Ke-Wei Ding
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Ling-Ling Chang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Duan-Lin Cao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, USA.
- Depaertment of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
5
|
Baker Cortés BD, Enache M, Küster K, Studener F, Lee T, Marets N, Bulach V, Hosseini MW, Stöhr M. Structural Transformation of Surface-Confined Porphyrin Networks by Addition of Co Atoms. Chemistry 2021; 27:12430-12436. [PMID: 34153154 PMCID: PMC8456947 DOI: 10.1002/chem.202101217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/06/2022]
Abstract
The self-assembly of a nickel-porphyrin derivative (Ni-DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni-DPPyP onto Au(111) gave rise to a close-packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two-dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close-packed network and post-deposition annealing at 423 K led to the formation of a Co-coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal-ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni-DPPyP molecule.
Collapse
Affiliation(s)
- Brian D. Baker Cortés
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Mihaela Enache
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Kathrin Küster
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Present address: Max-Planck-Institut für FestkörperforschungHeisenbergstraße 170569StuttgartGermany
| | - Florian Studener
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Tien‐Lin Lee
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEUK
| | - Nicolas Marets
- Laboratoire de Tectonique MoléculaireUMR Unistra-CNRS 7140Université de Strasbourg4 rue BlaisePascal67070StrasbourgFrance
| | - Véronique Bulach
- Laboratoire de Tectonique MoléculaireUMR Unistra-CNRS 7140Université de Strasbourg4 rue BlaisePascal67070StrasbourgFrance
| | - Mir Wais Hosseini
- Laboratoire de Tectonique MoléculaireUMR Unistra-CNRS 7140Université de Strasbourg4 rue BlaisePascal67070StrasbourgFrance
| | - Meike Stöhr
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
6
|
Auffray M, Charra F, Sosa Vargas L, Mathevet F, Attias AJ, Kreher D. Synthesis and photophysics of new pyridyl end-capped 3D-dithia[3.3]paracyclophane-based Janus tectons: surface-confined self-assembly of their model pedestal on HOPG. NEW J CHEM 2020. [DOI: 10.1039/d0nj00110d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Once synthesized, these new tectons demonstrated both ionic and coordination bonding. Surprisingly, P forms a quasi-square self-assembly independently of the underlying HOPG lattice.
Collapse
Affiliation(s)
- M. Auffray
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - F. Charra
- Service de Physique de l’Etat Condensé
- CEA CNRS Université Paris-Saclay
- CEA Saclay
- F-91191 Gif-sur-Yvette Cedex
- France
| | - L. Sosa Vargas
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - F. Mathevet
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - A.-J. Attias
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| | - D. Kreher
- Sorbonne Université
- UPMC Univ Paris 06
- Institut Parisien de Chimie Moléculaire
- UMR CNRS 8232
- 75252 Paris Cedex 05
| |
Collapse
|
7
|
De Luca O, Caruso T, Turano M, Ionescu A, Godbert N, Aiello I, Ghedini M, Formoso V, Agostino RG. Adsorption of Nile Red Self-Assembled Monolayers on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14761-14768. [PMID: 31657218 DOI: 10.1021/acs.langmuir.9b02416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability of Nile Red to self-assemble into supramolecular packings on Au(111) was studied using scanning tunneling microscopy and modeled through theoretical semiempirical calculations. At both submonolayer (sub-ML) and ML coverages, two distinct molecular packings, that is, four-leaf clover and dense chain, were observed, both weakly interacting with the underlying metal surface. Theoretical calculations suggested that the dipole moment plays a subtle role in both molecular assemblies, held together by hydrogen bonds between the Nile Red molecules. Furthermore, although both molecular assemblies were observed in as-deposited samples, a mild thermal annealing caused the transition from the four-leaf clover to the dense-chain packing, pointing out the greater stability of the dense-chain configuration. The study further emphasized how the established interactions between the Nile Red molecules are strongly influenced by the surrounding environment.
Collapse
Affiliation(s)
- Oreste De Luca
- Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
| | - Tommaso Caruso
- Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- Consiglio Nazionale Interuniversitario Scienze Fisiche della Materia (C.N.I.S.M) , Via della Vasca Navale, 84 , 00146 Roma , Italy
| | - Marco Turano
- Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
| | - Andreea Ionescu
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici), Centro di Eccellenza CEMIF.CAL, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
| | - Nicolas Godbert
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici), Centro di Eccellenza CEMIF.CAL, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
| | - Iolinda Aiello
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici), Centro di Eccellenza CEMIF.CAL, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
| | - Mauro Ghedini
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- MAT_INLAB (Laboratorio di Materiali Molecolari Inorganici), Centro di Eccellenza CEMIF.CAL, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
| | - Vincenzo Formoso
- Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- Consiglio Nazionale Interuniversitario Scienze Fisiche della Materia (C.N.I.S.M) , Via della Vasca Navale, 84 , 00146 Roma , Italy
| | - Raffaele Giuseppe Agostino
- Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- CNR-Nanotec, UoS di Cosenza, Dipartimento di Fisica , Università della Calabria , 87036 Arcavacata di Rende , Cosenza , Italy
- Consiglio Nazionale Interuniversitario Scienze Fisiche della Materia (C.N.I.S.M) , Via della Vasca Navale, 84 , 00146 Roma , Italy
| |
Collapse
|
8
|
Carro P, Salvarezza RC. Gold adatoms modulate sulfur adsorption on gold. NANOSCALE 2019; 11:19341-19351. [PMID: 31435624 DOI: 10.1039/c9nr05709a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sulfur adsorption on Au(111) at high coverage has been studied by density functional calculations. In this case S species organize into rectangular structures containing 8 S atoms irrespective of the S source, which have been alternatively assigned to adsorbed monomeric S, adsorbed S2, adsorbed monomeric plus S2 species, and gold sulfide. We found that monomeric S at the high coverage organizes into S2 species that are stabilized into the 8-S structures by Au adatoms, forming gold disulfide complexes (Au-(S2)4). The Au atoms could be provided by decomposition of more diluted AuS3 containing phases, as recently proposed, and direct removal from terraces and step edges, both explaining the surface coverage of vacancy islands coexisting with the 8-S structures. The gold-disulfide complexes capture the disorder shown in the experimental STM images, explain the intrigued features of XPS, and also, give a smooth pathway to gold sulfide formation at higher temperatures. More importantly, the gold-disulfide complexes allow a unified picture of the gold-sulfur surface chemistry at high coverage for thiols and adsorbed sulfur species where the surface chemistry remains under discussion.
Collapse
Affiliation(s)
- Pilar Carro
- Área de Química Física, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, Avda. Francisco Sánchez, s/n 38200-La Laguna, Tenerife, Spain
| | - Roberto C Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata 1900, Argentina.
| |
Collapse
|