1
|
Lange A, Kapernaum N, Wojnarowska Z, Holtzheimer L, Mies S, Williams V, Gießelmann F, Taubert A. Sulfobetaine ionic liquid crystals based on strong acids: phase behavior and electrochemistry. Phys Chem Chem Phys 2025; 27:844-860. [PMID: 39661016 DOI: 10.1039/d4cp03060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A group of new zwitterion based ionic liquid crystals (ILCs) have been synthesized. Depending on the counter anion (mesylate or hydrogen sulfate) the phase behavior of the resulting ILCs is quite different. Mesylate based ILCs show complex phase behavior with multiple phases depending on the alkyl chain length. In contrast, hydrogen sulfate based systems always exhibit Colr phases irrespective of the alkyl chain length. The latter show much larger ILC mesophase windows and are thermally stable up to ca. 200 °C. All ILCs show reasonable ionic conductivities of up to 10-4 S cm-1 at elevated temperatures, making these ILCs candidates for intermediate temperature ionic conductors.
Collapse
Affiliation(s)
- Alyna Lange
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Nadia Kapernaum
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzow, Poland
| | - Lea Holtzheimer
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Stefan Mies
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| | - Vance Williams
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Frank Gießelmann
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
2
|
Zellmann-Parrotta CO, Williams VE. Useful synthetic artifacts? The impact of ubiquitous linker-adjacent groups on the self-assembly of discotic dimers. SOFT MATTER 2024; 20:4504-4514. [PMID: 38804153 DOI: 10.1039/d4sm00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Although discotic dimers commonly feature bulky ether substituents adjacent to the linking group, the impact of these chains on self-assembly remains unclear. A series of dibenzo[a,c]phenazine dimers with alkoxy groups ortho to the linker were prepared and their solution conformational dynamics and liquid crystalline properties examined. The presence of a methoxy substitutent adjacent to the bridging group increased the phase stability, whereas longer chains dramatically decreased clearing temperatures. NMR solution studies indicated that adjacent groups increased the preference of dimers to adopt unfolded conformers. DFT models indicated that the unfolded structures were nonplanar and hence less compatible with columnar ordering, leading to a destabilization of the mesophases.
Collapse
Affiliation(s)
| | - Vance E Williams
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, BC, Canada.
| |
Collapse
|
3
|
Li Z, Raab A, Kolmangadi MA, Busch M, Grunwald M, Demel F, Bertram F, Kityk AV, Schönhals A, Laschat S, Huber P. Self-Assembly of Ionic Superdiscs in Nanopores. ACS NANO 2024; 18:14414-14426. [PMID: 38760015 PMCID: PMC11155240 DOI: 10.1021/acsnano.4c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperature-dependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes' hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic-hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aileen Raab
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mohamed Aejaz Kolmangadi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Mark Busch
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marco Grunwald
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Felix Demel
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Florian Bertram
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Andriy V. Kityk
- Faculty of
Electrical Engineering, Czestochowa University
of Technology, Al. Armii
Krajowej 17, 42-200 Czestochowa, Poland
| | - Andreas Schönhals
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- Institut
für Chemie, Technische Universität
Berlin, Straße des
17. Juni 135, 10623 Berlin, Germany
| | - Sabine Laschat
- Institut
für Organische Chemie, Universität
Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, Denickestr. 15, 21073 Hamburg, Germany
- Centre
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Cheng W, Xian F, Zhou Z, Hu K, Gao J. Solubility and Stability of Carotenoids in Ammonium- and Phosphonium-Based Ionic Liquids: Effect of Solvent Nature, Temperature and Water. Molecules 2023; 28:molecules28083618. [PMID: 37110853 PMCID: PMC10143741 DOI: 10.3390/molecules28083618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Ionic liquids (ILs) have arisen as alternatives to organic solvents and been used in natural pigment extraction in recent decades. However, the solubility and stability of carotenoids in phosphonium- and ammonium-based ILs are insufficiently explored. In this work, the physicochemical properties of the ILs, and the dissolution behavior and storage stability of three carotenoids (astaxanthin, β-carotene, and lutein) in the IL aqueous solution were investigated. The results showed that the solubility of the carotenoids in the acidic IL solution is higher than that in the alkaline IL solution, and the optimal pH is about 6. The solubility of astaxanthin (40 mg/100 g), β-carotene (105 mg/100 g), and lutein (5250 mg/100 g) was the highest in tributyloctylphosphonium chloride ([P4448]Cl) due to the van der Waals forces with [P4448]+ and hydrogen bonding with Cl-. A high temperature was beneficial to improve the solubility, but it can reduce the storage stability. Water has no significant effect on the carotenoid stability, but a high water content decreases the carotenoid solubility. A IL water content of 10-20%, an extraction temperature of 338.15 K, and a storage temperature of less than 298.15 K are beneficial for reducing the IL viscosity, improving carotenoid solubility, and maintaining good stability. Moreover, a linear correlation was found between the color parameters and carotenoid contents. This study provides some guidance for screening suitable solvents for carotenoid extraction and storage.
Collapse
Affiliation(s)
- Wanting Cheng
- Collage of Food Science, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Feng Xian
- Collage of Food Science, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhanluo Zhou
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524091, China
| | - Kun Hu
- Collage of Food Science, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Gao
- Collage of Food Science, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
5
|
Cao S, Aimi J, Yoshio M. Electroactive Soft Actuators Based on Columnar Ionic Liquid Crystal/Polymer Composite Membrane Electrolytes Forming 3D Continuous Ionic Channels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43701-43710. [PMID: 36044399 DOI: 10.1021/acsami.2c11029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report low-voltage-driven fast-response nanostructured columnar ionic liquid crystal/polymer composite actuators that form three-dimensional continuous ion channels. A three-component self-assembly of a zwitterionic rod-like molecule (49.5 wt %), an ionic liquid (27.5 wt %), and poly(vinyl alcohol) (23.0 wt %) provided a free-standing stretchable membrane electrolyte. The dissociated ions can move through a continuous 3D ionophilic matrix surrounding the hydrophobic columns formed by the hexagonally organized rod-mesogens. Three-layer actuators composed of the electrolyte film sandwiched between two conductive polymer film electrodes of doped polythiophene exhibited a bending motion with 0.32% strain and moved 2 mm within 220 ms under 1 V at 0.1 Hz in 70% relative humidity due to the formation of electric double layers at the soft solid electrolyte/electrode interfaces. The bending strain of the columnar nanostructured actuator is comparable to those of polymer iongel actuators and block polymer actuators containing 25-80 wt % of ionic liquids. It is noteworthy that a small number of ions organized into the 3D nanochannels can generate the large bending deformation, which can contribute to reduce the risk of leakage of ions and the production cost. In addition, we have demonstrated a low-voltage-driven deformable mirror actuator that is expected to be applied to optical devices.
Collapse
Affiliation(s)
- Siyu Cao
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Junko Aimi
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Masafumi Yoshio
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
6
|
Yildirim A, Krause C, Huber P, Schönhals A. Multiple glassy dynamics of a homologous series of triphenylene-based columnar liquid crystals – A study by broadband dielectric spectroscopy and advanced calorimetry. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Yan A, Sokolinski T, Lane W, Tan J, Ferris K, Ryan EM. Applying transfer learning with convolutional neural networks to identify novel electrolytes for metal air batteries. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Ciastek-Iskrzycka S, Szczytko J, Monobe H, Pociecha D, Jasiński M, Kaszyński P. Paramagnetic ionic liquid crystals: Ion conductive bent-core derivatives of stable radicals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Smaranda I, Nila A, Ganea P, Daescu M, Zgura I, Ciobanu RC, Trandabat A, Baibarac M. The Influence of the Ceramic Nanoparticles on the Thermoplastic Polymers Matrix: Their Structural, Optical, and Conductive Properties. Polymers (Basel) 2021; 13:polym13162773. [PMID: 34451312 PMCID: PMC8402000 DOI: 10.3390/polym13162773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
This paper prepared composites under the free membranes form that are based on thermoplastic polymers of the type of polyurethane (TPU) and polyolefin (TPO), which are blended in the weight ratio of 2:1, and ceramic nanoparticles (CNs) such as BaSrTiO3 and SrTiO3. The structural, optical, and conductive properties of these new composite materials are reported. The X-ray diffraction studies highlight a cubic crystalline structure of these CNs. The main variations in the vibrational properties of the TPU:TPO blend induced by CNs consist of the following: (i) the increase in the intensity of the Raman line of 1616 cm-1; (ii) the down-shift of the IR band from 800 to 791 cm-1; (iii) the change of the ratio between the absorbance of IR bands localized in the spectral range 950-1200 cm-1; and (iv) the decrease in the absorbance of the IR band from 1221 cm-1. All these variations were correlated with a preferential adsorption of thermoplastic polymers on the CNs surface. A photoluminescence (PL) quenching process of thermoplastic polymers is demonstrated to occur in the presence of CNs. The anisotropic PL measurements have highlighted a change in the angle of the binding of the TPU:TPO blend, which varies from 23.7° to ≈49.3° and ≈53.4°, when the concentration of BaSrTiO3 and SrTiO3 CNs, respectively, is changed from 0 to 25 wt. %. Using dielectric spectroscopy, two mechanisms are invoked to take place in the case of the composites based on TPU:TPO blends and CNs, i.e., one regarding the type of the electrical conduction and another specifying the dielectric-dipolar relaxation processes.
Collapse
Affiliation(s)
- Ion Smaranda
- Laboratory Optical Processes in Nanostructured Materials, National Institute of Materials Physics, Atomistilor Street 405A, R077125 Bucharest, Romania; (I.S.); (A.N.); (P.G.); (M.D.); (I.Z.)
| | - Andreea Nila
- Laboratory Optical Processes in Nanostructured Materials, National Institute of Materials Physics, Atomistilor Street 405A, R077125 Bucharest, Romania; (I.S.); (A.N.); (P.G.); (M.D.); (I.Z.)
| | - Paul Ganea
- Laboratory Optical Processes in Nanostructured Materials, National Institute of Materials Physics, Atomistilor Street 405A, R077125 Bucharest, Romania; (I.S.); (A.N.); (P.G.); (M.D.); (I.Z.)
| | - Monica Daescu
- Laboratory Optical Processes in Nanostructured Materials, National Institute of Materials Physics, Atomistilor Street 405A, R077125 Bucharest, Romania; (I.S.); (A.N.); (P.G.); (M.D.); (I.Z.)
| | - Irina Zgura
- Laboratory Optical Processes in Nanostructured Materials, National Institute of Materials Physics, Atomistilor Street 405A, R077125 Bucharest, Romania; (I.S.); (A.N.); (P.G.); (M.D.); (I.Z.)
| | - Romeo C. Ciobanu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering, Technical University Gh. Asachi Iasi, Boulevard Profesor Dimitrie Mangeron 67, R070050 Iasi, Romania; (R.C.C.); (A.T.)
| | - Alexandru Trandabat
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering, Technical University Gh. Asachi Iasi, Boulevard Profesor Dimitrie Mangeron 67, R070050 Iasi, Romania; (R.C.C.); (A.T.)
| | - Mihaela Baibarac
- Laboratory Optical Processes in Nanostructured Materials, National Institute of Materials Physics, Atomistilor Street 405A, R077125 Bucharest, Romania; (I.S.); (A.N.); (P.G.); (M.D.); (I.Z.)
- Correspondence: ; Tel.: + 40-21-3690170
| |
Collapse
|
10
|
Molecular dynamics and electrical conductivity of Guanidinium based ionic liquid crystals: Influence of cation headgroup configuration. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sun Y, Chen Z, Wang X. The crystal structure of 1-dodecylpyridin-1-ium bromide monohydrate, C 17H 32BrNO. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C17H32BrNO, triclinic,
P
1
‾
$P\bar{1}$
(no. 2), a = 5.344(3) Å, b = 7.871(5) Å, c = 23.614(15) Å, α = 95.990(12)°, β = 95.747(12)°, γ = 98.386(12)°, V = 970.5(11) Å3, Z = 2, R
gt(F) = 0.0550, wR
ref(F
2) = 0.1527, T = 293(2) K.
CCDC no.: 1983264
Collapse
Affiliation(s)
- Yanwen Sun
- School of Chemistry and Chemical Engineering , Hebei Normal University for Nationalities, Higher Education Park , Chengde 067000 , P. R. China
| | - Zhen Chen
- School of Chemistry and Chemical Engineering , Hebei Normal University for Nationalities, Higher Education Park , Chengde 067000 , P. R. China
| | - Xiaozhong Wang
- School of Chemistry and Chemical Engineering , Hebei Normal University for Nationalities, Higher Education Park , Chengde 067000 , P. R. China
| |
Collapse
|
12
|
Vertical Orientation of Liquid Crystal on 4- n-Alkyloxyphenoxymethyl-Substituted Polystyrene Containing Liquid Crystal Precursor. Polymers (Basel) 2021; 13:polym13050736. [PMID: 33673579 PMCID: PMC7956854 DOI: 10.3390/polym13050736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
We synthesized a series of polystyrene derivatives that were modified with precursors of liquid crystal (LC) molecules, such as 4-ethyloxyphenol (homopolymer PEOP and copolymer PEOP#; # = 20, 40, 60, and 80, where # indicates the molar fraction of 4-ethyloxyphenoxymethyl in the side chain), 4-n-butyloxyphenol (PBOP), 4-n-hexyloxyphenol (PHOP), and 4-n-octyloxyphenol (POOP), via polymer modification reaction to investigate the orientation of LC molecules on polymer films, exhibiting part of the LC molecular structure. LC molecules showed a stable and uniform vertical orientation in LC cells fabricated with polymers that have 4-ethyloxyphenoxymethyl in the range of 40–100 mol%. In addition, similar results were obtained in LC cells fabricated with homopolymers of PEOP, PBOP, PHOP, and POOP. The vertical orientation of LC molecules in LC cells fabricated with polymer films correlated to the surface energy of polymer films. For example, vertical LC orientation was observed when the total surface energies of the polymer films were lower than approximately 43.2 mJ/m2. Good alignment stabilities were observed at 150 °C and 20 J/cm2 of ultraviolet irradiation for LC cells fabricated with PEOP film.
Collapse
|
13
|
Domagalski JT, Xifre-Perez E, Marsal LF. Recent Advances in Nanoporous Anodic Alumina: Principles, Engineering, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:430. [PMID: 33567787 PMCID: PMC7914664 DOI: 10.3390/nano11020430] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
The development of aluminum anodization technology features many stages. With the story stretching for almost a century, rather straightforward-from current perspective-technology, raised into an iconic nanofabrication technique. The intrinsic properties of alumina porous structures constitute the vast utility in distinct fields. Nanoporous anodic alumina can be a starting point for: Templates, photonic structures, membranes, drug delivery platforms or nanoparticles, and more. Current state of the art would not be possible without decades of consecutive findings, during which, step by step, the technique was more understood. This review aims at providing an update regarding recent discoveries-improvements in the fabrication technology, a deeper understanding of the process, and a practical application of the material-providing a narrative supported with a proper background.
Collapse
Affiliation(s)
| | | | - Lluis F. Marsal
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain; (J.T.D.); (E.X.-P.)
| |
Collapse
|
14
|
Ganea CP, Cîrcu V, Manaila-Maximean D. Effect of titanium oxide nanoparticles on the dielectric properties and ionic conductivity of a new smectic bis-imidazolium salt with dodecyl sulfate anion and cyanobiphenyl mesogenic groups. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Salikolimi K, Sudhakar AA, Ishida Y. Functional Ionic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11702-11731. [PMID: 32927953 DOI: 10.1021/acs.langmuir.0c01935] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic liquid crystals have emerged as a new class of functional soft materials in the last two decades, and they exhibit synergistic characteristics of ionic liquids and liquid crystals such as macroscopic orientability, miscibility with various species, phase stability, nanostructural tunability, and polar nanochannel formation. Owing to these characteristics, the structures, properties, and functions of ionic liquid crystals have been a hot topic in materials chemistry, finding various applications including host frameworks for guest binding, separation membranes, ion-/proton-conducting membranes, reaction media, and optoelectronic materials. Although several excellent review articles of ionic liquid crystals have been published recently, they mainly focused on the fundamental aspects, structures, and specific properties of ionic liquid crystals, while these applications of ionic liquid crystals have not yet been discussed at one time. The aim of this feature article is to provide an overview of the applications of ionic liquid crystals in a comprehensive manner.
Collapse
Affiliation(s)
| | | | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Electrical Conductivity and Multiple Glassy Dynamics of Crown Ether-Based Columnar Liquid Crystals. J Phys Chem B 2020; 124:8728-8739. [PMID: 32902985 DOI: 10.1021/acs.jpcb.0c06854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phase behavior of two unsymmetrical triphenylene crown ether-based columnar liquid crystals bearing different lengths of alkyl chains, KAL465 and KAL468, was investigated using differential scanning calorimetry (DSC). A plastic crystalline (Cry), a columnar liquid crystalline (Colh), and an isotropic phase were observed along with two glass transitions in the Cry phase. The molecular mobility of the KAL compounds was further studied by a combination of broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques. By the BDS investigations, three dielectric active relaxation processes were observed for both samples. At low temperatures, a γ-process in the Cry state was detected and is assigned to the localized fluctuations taking place in the alkyl chains. An α2-process takes place at higher temperatures in the Cry phase. An α3-process was found in the Colh mesophase. The advanced calorimetric techniques consist of fast scanning calorimetry (FSC) and specific heat spectroscopy employing temperature-modulated DSC and FSC. The advanced calorimetric investigations revealed that besides the α2-process in agreement with BDS, there is a second dynamic glass transition (α1-process), which is not observed by dielectric spectroscopy. The results are in good agreement with the glass transitions detected by DSC for this process. The temperature dependences of the relaxation rates of the α1-, α2-, and α3-processes are all different. Therefore, different molecular assignments for the relaxation processes are proposed. In addition to the relaxation processes, a conductivity contribution was explored by BDS for both KAL compounds. The conductivity contribution appears in both Cry and Colh phases, where the conductivity increases by ca. 1 order of magnitude at phase transition from the Cry to the hexagonal phase.
Collapse
|
17
|
Yildirim A, Krause C, Zorn R, Lohstroh W, Schneider GJ, Zamponi M, Holderer O, Frick B, Schönhals A. Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy. SOFT MATTER 2020; 16:2005-2016. [PMID: 32003764 DOI: 10.1039/c9sm02487e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized γ-relaxation at lower temperatures and a so called α2-relaxation at higher temperatures. The relaxation rates of the α2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by Hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric α2-relaxation and follow the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called α1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the α1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy, which supports its assignment. The α2-relaxation is assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric γ-relaxation.
Collapse
Affiliation(s)
- Arda Yildirim
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Christina Krause
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Reiner Zorn
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), 52425 Jülich, Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Gerald J Schneider
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Olaf Holderer
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Bernhard Frick
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
18
|
Qiao X, Sun P, Wu A, Sun N, Dong B, Zheng L. Supramolecular Thermotropic Ionic Liquid Crystals Formed via Self-Assembled Zwitterionic Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1598-1605. [PMID: 30563346 DOI: 10.1021/acs.langmuir.8b03448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supramolecular thermotropic ionic liquid crystals (ILCs) with hexagonal and lamellar phases were fabricated by the self-assembly of zwitterionic ionic liquids, which were formed by 3-(1-alkyl-3-imidazolio) propanesulfonate with different alkyl chain lengths C nIPS ( n = 12, 14, 16) and 3,4,5-tris(dodecyloxy)benzoic acid (TDBA) based on intermolecular electrostatic interactions. The phase behaviors of ILCs were investigated by differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and polarized optical microscopy (POM). The highly ordered and well-defined microstructure of ILCs can be considered to be proton pathways and to radically improve the ionic conductivity, suggesting the induction of proton conduction through a hopping mechanism.
Collapse
Affiliation(s)
- Xuanxuan Qiao
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| | - Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| | - Bin Dong
- School of Chemical Engineering and Technology , China University of Mining and Technology , Xuzhou 221116 , P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| |
Collapse
|
19
|
Atawa B, Correia NT, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A. Molecular mobility of amorphous N-acetyl-α-methylbenzylamine and Debye relaxation evidenced by dielectric relaxation spectroscopy and molecular dynamics simulations. Phys Chem Chem Phys 2019; 21:702-717. [DOI: 10.1039/c8cp04880k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular mobility of NAC-MBA molecule is described by means of DRS, FSC and MD simulations.
Collapse
|
20
|
Yildirim A, Bühlmeyer A, Hayashi S, Haenle JC, Sentker K, Krause C, Huber P, Laschat S, Schönhals A. Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry - assessment of the molecular origin. Phys Chem Chem Phys 2019; 21:18265-18277. [PMID: 31393479 DOI: 10.1039/c9cp03499d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The α1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The α2-process found at temperatures lower than α1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science.
Collapse
Affiliation(s)
- Arda Yildirim
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Horike S, Ayano M, Tsuno M, Fukushima T, Koshiba Y, Misaki M, Ishida K. Thermodynamics of ionic liquid evaporation under vacuum. Phys Chem Chem Phys 2018; 20:21262-21268. [PMID: 29952385 DOI: 10.1039/c8cp02233j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The low volatility of ionic liquids (ILs) is one of their most interesting physico-chemical properties; however, the general understanding of their evaporation dynamics under vacuum is still lagging. Here, we studied the thermodynamics of IL evaporation by employing thermogravimetry (TG) measurements under vacuum. The thermodynamic parameters of ILs, such as the evaporation onset temperatures, enthalpies, entropies, saturation vapor pressures, and boiling points were quantified by analyzing the TG data. The obtained evaporation enthalpies (110-140 kJ mol-1) were higher than those of typical molecular liquids, and the entropies (>88 J mol-1 K-1) suggested that they are exceptions of the Trouton's rule. The obtained Clausius-Clapeyron equations demonstrated that the saturation vapor pressures of ILs only depend on temperature. Further, we derived the empirical equation for estimating the upper limit temperature of the liquid phase of IL under given external pressures. Using the evaporation behaviors of referential normal alkanes and charge-transfer complex and the evaporation entropies of the ILs, the vaporized IL structure was thermodynamically modelled. The ILs were found to evaporate as ion pairs, instead of as individual ions or higher-ordered cluster structures. By comparing a series of ILs with various cations and a fixed anion, it was found that the IL evaporation dynamics under vacuum is strongly and systematically affected by their chemical structures, charge balances between the cations and the anions, molecular weights, and the higher-ordered structures including polar and non-polar regions. Our concept, measurement method, and equation can be extended to other ILs and low-volatile liquids under vacuum, and help with the design of ILs with higher thermal stabilities.
Collapse
Affiliation(s)
- Shohei Horike
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|