1
|
Jiang Y, Chen X, Xiao Z, Wang T, Chen Y. Achiral double-decker phthalocyanine assemble into helical nanofibers for electrochemically chiral recognition of tryptophan. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
2
|
Ariga K, Mori T, Kitao T, Uemura T. Supramolecular Chiral Nanoarchitectonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905657. [PMID: 32191374 DOI: 10.1002/adma.201905657] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/26/2019] [Indexed: 05/06/2023]
Abstract
Exploration of molecular functions and material properties based on the control of chirality would be a scientifically elegant approach. Here, the fabrication and function of chiral-featured materials from both chiral and achiral components using a supramolecular nanoarchitectonics concept are discussed. The contents are classified in to three topics: i) chiral nanoarchitectonics of rather general molecular assemblies; ii) chiral nanoarchitectonics of metal-organic frameworks (MOFs); iii) chiral nanoarchitectonics in liquid crystals. MOF structures are based on nanoscopically well-defined coordinations, while mesoscopic orientations of liquid-crystalline phases are often flexibly altered. Discussion on the effects and features in these representative materials systems with totally different natures reveals the universal importance of supramolecular chiral nanoarchitectonics. Amplification of chiral molecular information from molecules to materials-level structures and the creation of chirality from achiral components upon temporal statistic fluctuations are universal, regardless of the nature of the assemblies. These features are thus surely advantageous characteristics for a wide range of applications.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Uemura
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
3
|
Nadimetla DN, Al Kobaisi M, Bugde ST, Bhosale SV. Tuning Achiral to Chiral Supramolecular Helical Superstructures. CHEM REC 2020; 20:793-819. [PMID: 32181970 DOI: 10.1002/tcr.202000004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
The design and synthesis of achiral organic functional molecules which can assemble into a chiral with selective handedness in the absence of chiral substances is an important in understanding the role chirality plays within these systems. In this review, we described general approaches towards supramolecular chiral molecules the synthesis and self-assembly of achiral molecule to active chiral molecules to investigate controlled supramolecular chiral nanostructures with their photoluminescent properties for rapid, sensitive and selective detection of analytes of choice. Various small molecules have been discussed for achiral to chiral along with induction of chirality and controlled chiral helical structures in detail. We discussed few examples where stimuli used to control the chirality such as temperature, pH etc. Finally, we will also explore on the photo responsive helicity properties of the aggregation induced emission active molecule such as tetraphenylethene conjugates.
Collapse
Affiliation(s)
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Sandesh T Bugde
- School of Chemical Sciences, Goa University, Goa, 403206, India
| | | |
Collapse
|
4
|
Visheratina AK, Purcell-Milton F, Gun’ko YK, Orlova A. Circular Dichroism Spectroscopy as a Powerful Tool for Unraveling Assembly of Chiral Nonluminescent Aggregates of Photosensitizer Molecules on Nanoparticle Surfaces. J Phys Chem A 2019; 123:8028-8035. [DOI: 10.1021/acs.jpca.9b05500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Finn Purcell-Milton
- School of Chemistry and CRANN, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Yurii K. Gun’ko
- ITMO University, 49 Kronverksky Prospekt, Saint Petersburg 197101, Russia
- School of Chemistry and CRANN, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Anna Orlova
- ITMO University, 49 Kronverksky Prospekt, Saint Petersburg 197101, Russia
| |
Collapse
|
5
|
Wang X, Liu C, Wang T, Jiang J. Air–water interfacial assembly of all-aromatic-substituted double-decker phthalocyanine forms aligned nanoparticles. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this manuscript, unexpected supramolecular assembly of [Formula: see text]-conjugated molecules containing complex aromatic substituents was investigated. The air–water interfacial assembly of double-decker phthalocyanines containing sixteen phenol substituents (Ce(Pc2)[Formula: see text] and Y(Pc2)[Formula: see text] form aligned nanoparticles. Depending on the different surface pressure, the Ce(Pc2)[Formula: see text] self-assembled nanostructures can be regulated thoroughly. Although Ce(Pc2)[Formula: see text] and Y(Pc2)[Formula: see text] have only aromatic substituent groups, no H- or J-aggregation of [Formula: see text]-conjugated systems can be detected from the UV-vis spectra of the assemblies of these double-decker phthalocyanines. When the nanostructures of these assemblies were changed greatly, no corresponding changes of UV-vis spectra and FT-IR spectra could be detected. These unusual results can be understood from the balance between the hydrophilicity of aromatic substituents and the ether linkages of double-decker phthalocyanines and the surface pressure, and open new. approaches for supramolecular assembly of complex [Formula: see text]-conjugated systems.
Collapse
Affiliation(s)
- Xiqian Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenxi Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Chen X, Wang C, Chen Y, Qi D, Jiang J. Vibrational spectra of alkylamino substituted phthalocyanine compounds: Density functional theory calculations. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The infrared spectra of tetrakis(dibutylamino) phthalocyanine and octakis(dibutylamino) compounds were studied via theoretical investigations. The results reveal deep fusion of the peripheral alkylamino moieties with the phthalocyanine chromophore in the tetrakis(dibutylamino)- but not in the octakis(dibutylamino)-phthalocyanine compounds. The successive localized molecular orbitals (LMO) and bond order analyses give support for the infrared vibrational results.
Collapse
Affiliation(s)
- Xin Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chiming Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuxiang Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|