1
|
Luo J, Xiao T, Liu C, Pan Y. Recent Progress on the Involvement of Formaldehyde in the Methanol-To-Hydrocarbons Reaction. CHEMSUSCHEM 2025; 18:e202400884. [PMID: 39072945 DOI: 10.1002/cssc.202400884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
This review summarized the recent research progress on the crucial role of formaldehyde during the methanol-to-hydrocarbons (MTH) reaction. As a reaction intermediate, formaldehyde participates in the formation of carbon-carbon, the establish of dual-cycle, and the coking process of MTH reaction. Different techniques for formaldehyde detection in the study of MTH are also introduced.The conversion of methanol-to-hydrocarbons (MTH) over zeolite catalysts has been the subject of intense research since its discovery. Great effort has been devoted to the investigation of four key topics: the initiation of C-C bonds, the establishment of hydrocarbon pool (HCP), the adjustment of product selectivity, and the deactivation process of catalysts. Despite 50 years of study, some mechanisms remain controversial. However, an intermediate species, formaldehyde (HCHO), has recently garnered considerable attention for its influence on the entire MTH process. The discovery of HCHO and its significant role in the MTH process has been facilitated by the application of in situ analytical techniques, such as synchrotron radiation photoionization mass spectrometry (SR-PIMS) and photoelectron photoion coincidence spectroscopy (PEPICO). It is now revealed that HCHO is involved in the initiation, propagation, and termination process of MTH reaction. Such mechanistic understanding of HCHO's involvement has provided valuable insights for optimizing the MTH process.
Collapse
Affiliation(s)
- Jinsong Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Tianci Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
2
|
Weber JL, Mejía CH, de Jong KP, de Jongh PE. Recent advances in bifunctional synthesis gas conversion to chemicals and fuels with a comparison to monofunctional processes. Catal Sci Technol 2024; 14:4799-4842. [PMID: 39206322 PMCID: PMC11347923 DOI: 10.1039/d4cy00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
In order to meet the climate goals of the Paris Agreement and limit the potentially catastrophic consequences of climate change, we must move away from the use of fossil feedstocks for the production of chemicals and fuels. The conversion of synthesis gas (a mixture of hydrogen, carbon monoxide and/or carbon dioxide) can contribute to this. Several reactions allow to convert synthesis gas to oxygenates (such as methanol), olefins or waxes. In a consecutive step, these products can be further converted into chemicals, such as dimethyl ether, short olefins, or aromatics. Alternatively, fuels like gasoline, diesel, or kerosene can be produced. These two different steps can be combined using bifunctional catalysis for direct conversion of synthesis gas to chemicals and fuels. The synergistic effects of combining two different catalysts are discussed in terms of activity and selectivity and compared to processes based on consecutive reaction with single conversion steps. We found that bifunctional catalysis can be a strong tool for the highly selective production of dimethyl ether and gasoline with high octane numbers. In terms of selectivity bifunctional catalysis for short olefins or aromatics struggles to compete with processes consisting of single catalytic conversion steps.
Collapse
Affiliation(s)
- J L Weber
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - C Hernández Mejía
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - K P de Jong
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| | - P E de Jongh
- Materials Chemistry and Catalysis, Universiteit Utrecht Universiteitsweg 99 Utrecht Netherlands
| |
Collapse
|
3
|
Xie J, Olsbye U. The Oxygenate-Mediated Conversion of CO x to Hydrocarbons─On the Role of Zeolites in Tandem Catalysis. Chem Rev 2023; 123:11775-11816. [PMID: 37769023 PMCID: PMC10603784 DOI: 10.1021/acs.chemrev.3c00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 09/30/2023]
Abstract
Decentralized chemical plants close to circular carbon sources will play an important role in shaping the postfossil society. This scenario calls for carbon technologies which valorize CO2 and CO with renewable H2 and utilize process intensification approaches. The single-reactor tandem reaction approach to convert COx to hydrocarbons via oxygenate intermediates offers clear benefits in terms of improved thermodynamics and energy efficiency. Simultaneously, challenges and complexity in terms of catalyst material and mechanism, reactor, and process gaps have to be addressed. While the separate processes, namely methanol synthesis and methanol to hydrocarbons, are commercialized and extensively discussed, this review focuses on the zeolite/zeotype function in the oxygenate-mediated conversion of COx to hydrocarbons. Use of shape-selective zeolite/zeotype catalysts enables the selective production of fuel components as well as key intermediates for the chemical industry, such as BTX, gasoline, light olefins, and C3+ alkanes. In contrast to the separate processes which use methanol as a platform, this review examines the potential of methanol, dimethyl ether, and ketene as possible oxygenate intermediates in separate chapters. We explore the connection between literature on the individual reactions for converting oxygenates and the tandem reaction, so as to identify transferable knowledge from the individual processes which could drive progress in the intensification of the tandem process. This encompasses a multiscale approach, from molecule (mechanism, oxygenate molecule), to catalyst, to reactor configuration, and finally to process level. Finally, we present our perspectives on related emerging technologies, outstanding challenges, and potential directions for future research.
Collapse
Affiliation(s)
- Jingxiu Xie
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0315 Oslo, Norway
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
4
|
Koshti H, Bandyopadhyay R. Liquid-phase benzylation of toluene by benzyl alcohol over micro-mesoporous hierarchical mordenite zeolite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26777-w. [PMID: 37010684 DOI: 10.1007/s11356-023-26777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In this work, post-synthetic effective acid (HNO3) and base (NaOH) etching technique are used to create hierarchical mordenite having different pore structure. The powder X-ray diffraction (P-XRD) technique was used to confirm the crystalline structure of the base-modified and acid-modified mordenite. Field emission-scanning electron microscope (FE-SEM) was employed to confirm the structural morphology of the materials. The modified mordenite was further characterised by inductive coupled plasma-optical emission spectrometry (ICP-OES), N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), and acid-base titration, to confirm the structural integrity, presence of active acidic sites, and other vital parameters. The structure was well conserved after the change, as evidenced by the characterisation. The toluene benzylation with benzyl alcohol using hierarchical mordenite and H-mordenite produced mono-benzylated toluene. Comparison between acid treated, base treated, and H-mordenite was done. All samples were catalytically active as proved by the catalytic result in the benzylation reaction. The results show that the base alteration dramatically enhances the mesoporous surface area of H-mordenite. Furthermore, the acid-treated mordenite had the highest benzyl alcohol conversion (75%), but the base-modified mordenite had benzyl alcohol conversion of 73% with the highest mono-benzylated toluene selectivity (61%). The process was further optimised by varying the reaction temperature, duration, and catalyst quantity. Gas chromatography (GC) was used to evaluate the reaction products and gas chromatography-mass spectrometry (GC-MS) was used to confirm them. Introduction of mesoporosity in the microporous mordenite was found to have significant effect on their catalytic activity.
Collapse
Affiliation(s)
- Hardik Koshti
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382426, India
| | - Rajib Bandyopadhyay
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
5
|
Hydrogen transfer reaction contributes to the dynamic evolution of zeolite-catalyzed methanol and dimethyl ether conversions: Insight into formaldehyde. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Montalvo-Castro H, DeLuca M, Kilburn L, Hibbitts D. Mechanisms and Kinetics of the Dehydrogenation of C 6–C 8 Cycloalkanes, Cycloalkenes, and Cyclodienes to Aromatics in H-MFI Zeolite Framework. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hansel Montalvo-Castro
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Mykela DeLuca
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren Kilburn
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - David Hibbitts
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Wen W, Xiao T, Feng B, Zhou C, Li J, Ma H, Zhou Z, Zhang Y, Yang J, Wang Z, Qi F, Bao J, Liu C, Pan Y. Role of formaldehyde in promoting aromatic selectivity during methanol conversion over gallium-modified zeolites. Commun Chem 2022; 5:153. [PMID: 36697679 PMCID: PMC9814038 DOI: 10.1038/s42004-022-00771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
Gallium-modified HZSM-5 zeolites are known to increase aromatic selectivity in methanol conversion. However, there are still disputes about the exact active sites and the aromatic formation mechanisms over Ga-modified zeolites. In this work, in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) experiments were carried out to study the behaviors of intermediates and products during methanol conversion over Ga-modified HZSM-5. The increased formaldehyde (HCHO) yield over Ga-modified HZSM-5 was found to play a key role in the increase in aromatic yields. More HCHO was deemed to be generated from the direct dehydrogenation of methanol, and Ga2O3 in Ga-modified HZSM-5 was found to be the active phase. The larger increase in aromatic production over Ga-modified HZSM-5 after reduction‒oxidation treatment was found to be the result of redispersed Ga2O3 with smaller size generating a larger amount of HCHO. This study provides some new insights into the internal driving force for promoting the production of aromatics over Ga-modified HZSM-5.
Collapse
Affiliation(s)
- Wu Wen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Tianci Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Beibei Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Chaoqun Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Li
- Shanghai Research Institute of Petrochemical Technology SINOPEC, Shanghai, 201208, P. R. China
| | - Hao Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhongyue Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ying Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Fei Qi
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China.
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China.
| |
Collapse
|
8
|
Paunović V, Hemberger P, Bodi A, Hauert R, van Bokhoven JA. Impact of Nonzeolite-Catalyzed Formation of Formaldehyde on the Methanol-to-Hydrocarbons Conversion. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vladimir Paunović
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Roland Hauert
- Swiss Federal Laboratories for Materials Science and Technology, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
9
|
Lin S, Zhi Y, Liu Z, Yuan J, Liu W, Zhang W, Xu Z, Zheng A, Wei Y, Liu Z. Multi-scale dynamical cross-talk in zeolite-catalyzed methanol and dimethyl ether conversions. Natl Sci Rev 2022; 9:nwac151. [PMID: 36168443 PMCID: PMC9508824 DOI: 10.1093/nsr/nwac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022] Open
Abstract
Establishing a comprehensive understanding of the dynamical multiscale diffusion and reaction process is crucial for zeolite shape-selective catalysis and is urgently demanded in academia and industry. So far, diffusion and reaction for methanol and dimethyl ether (DME) conversions have usually been studied separately and focused on a single scale. Herein, we decipher the dynamical molecular diffusion and reaction process for methanol and DME conversions within the zeolite material evolving with time, at multiple scales, from the scale of molecules to single catalyst crystal and catalyst ensemble. Microscopic intracrystalline diffusivity is successfully decoupled from the macroscopic experiments and verified by molecular dynamics simulation. Spatiotemporal analyses of the confined carbonaceous species allow us to track the migratory reaction fronts in a single catalyst crystal and the catalyst ensemble. The constrained diffusion of DME relative to methanol alleviates the high local chemical potential of the reactant by attenuating its local enrichment, enhancing the utilization efficiency of the inner active sites of the catalyst crystal. In this context, the dynamical cross-talk behaviors of material, diffusion and reaction occurring at multiple scales is uncovered. Zeolite catalysis not only reflects the reaction characteristics of heterogeneous catalysis, but also provides enhanced, moderate or suppressed local reaction kinetics through the special catalytic micro-environment, which leads to the heterogeneity of diffusion and reaction at multiple scales, thereby realizing efficient and shape-selective catalysis.
Collapse
Affiliation(s)
- Shanfan Lin
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuchun Zhi
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Zhiqiang Liu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Jiamin Yuan
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Wenjuan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenna Zhang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Zhaochao Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences , Wuhan 430071 , China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
10
|
Hydrogenation of Carbon Dioxide to Value-Added Liquid Fuels and Aromatics over Fe-Based Catalysts Based on the Fischer–Tropsch Synthesis Route. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogenation of CO2 to value-added chemicals and fuels not only effectively alleviates climate change but also reduces over-dependence on fossil fuels. Therefore, much attention has been paid to the chemical conversion of CO2 to value-added products, such as liquid fuels and aromatics. Recently, efficient catalysts have been developed to face the challenge of the chemical inertness of CO2 and the difficulty of C–C coupling. Considering the lack of a detailed summary on hydrogenation of CO2 to liquid fuels and aromatics via the Fischer–Tropsch synthesis (FTS) route, we conducted a comprehensive and systematic review of the research progress on the development of efficient catalysts for hydrogenation of CO2 to liquid fuels and aromatics. In this work, we summarized the factors influencing the catalytic activity and stability of various catalysts, the strategies for optimizing catalytic performance and product distribution, the effects of reaction conditions on catalytic performance, and possible reaction mechanisms for CO2 hydrogenation via the FTS route. Furthermore, we also provided an overview of the challenges and opportunities for future research associated with hydrogenation of CO2 to liquid fuels and aromatics.
Collapse
|
11
|
Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nat Catal 2022; 5:605-614. [PMID: 35892076 PMCID: PMC7613158 DOI: 10.1038/s41929-022-00808-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Understanding hydrocarbon generation in the zeolite-catalysed conversions of methanol and methyl chloride requires advanced spectroscopic approaches to distinguish the complex mechanisms governing C-C bond formation, chain growth and the deposition of carbonaceous species. Here operando photoelectron photoion coincidence (PEPICO) spectroscopy enables the isomer-selective identification of pathways to hydrocarbons of up to C14 in size, providing direct experimental evidence of methyl radicals in both reactions and ketene in the methanol-to-hydrocarbons reaction. Both routes converge to C5 molecules that transform into aromatics. Operando PEPICO highlights distinctions in the prevalence of coke precursors, which is supported by electron paramagnetic resonance measurements, providing evidence of differences in the representative molecular structure, density and distribution of accumulated carbonaceous species. Radical-driven pathways in the methyl chloride-to-hydrocarbons reaction(s) accelerate the formation of extended aromatic systems, leading to fast deactivation. By contrast, the generation of alkylated species through oxygenate-driven pathways in the methanol-to-hydrocarbons reaction extends the catalyst lifetime. The findings demonstrate the potential of the presented methods to provide valuable mechanistic insights into complex reaction networks.
Collapse
|
12
|
Two-Step Dry Gel Method Produces MgAPO-11 with Low Aspect Ratio and Improved Catalytic Performance in the Conversion of Methanol to Hydrocarbons. Catalysts 2022. [DOI: 10.3390/catal12040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this article, the synthesis, characterization and catalytic performance of three MgAPO-11 catalysts with distinct crystal morphologies (sunflower, ball and candy) are presented. Among the three samples, the candy-like MgAPO-11-C, with high crystallinity and uniform particle size (of about 1 µm), was synthesized for the first time by using a unique two-step dry gel method. Despite the similar acid strength of the three samples, the different and distinct morphologies of the catalysts resulted in very different methanol-to-hydrocarbons (MTH) performances. In particular, the candy-like MgAPO-11-C presented the best MTH performance with the highest total conversion capacity (4.4 gMeOH·gcatalyst−1 h−1) and the best selectivity to C5+ aliphatics (64%).
Collapse
|
13
|
Mechanistic differences between methanol and dimethyl ether in zeolite-catalyzed hydrocarbon synthesis. Proc Natl Acad Sci U S A 2022; 119:2103840119. [PMID: 35046020 PMCID: PMC8794837 DOI: 10.1073/pnas.2103840119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Methanol conversion to hydrocarbons has emerged as a key reaction for synthetic energy carriers and light alkenes. The autocatalytic nature and complex reaction network make a mechanistic understanding very challenging and widely debated. Water is not only part of the overall conversion, it is also frequently used as diluent, influencing, in turn, activity, selectivity, and stability of the catalysts. Water directly and indirectly influences the processes that initiate the C–C formation via adjusting the chemical potential of methanol and dimethyl ether, with the latter being more efficient to generate highly reactive C1 species via hydride transfer. The insight shows paths to optimize the stability of catalysts and to tailor the product distribution for H-ZSM-5–based catalysts. Water influences critically the kinetics of the autocatalytic conversion of methanol to hydrocarbons in acid zeolites. At very low conversions but otherwise typical reaction conditions, the initiation of the reaction is delayed in presence of H2O. In absence of hydrocarbons, the main reactions are the methanol and dimethyl ether (DME) interconversion and the formation of a C1 reactive mixture—which in turn initiates the formation of first hydrocarbons in the zeolite pores. We conclude that the dominant reactions for the formation of a reactive C1 pool at this stage involve hydrogen transfer from both MeOH and DME to surface methoxy groups, leading to methane and formaldehyde in a 1:1 stoichiometry. While formaldehyde reacts further to other C1 intermediates and initiates the formation of first C–C bonds, CH4 is not reacting. The hydride transfer to methoxy groups is the rate-determining step in the initiation of the conversion of methanol and DME to hydrocarbons. Thus, CH4 formation rates at very low conversions, i.e., in the initiation stage before autocatalysis starts, are used to gauge the formation rates of first hydrocarbons. Kinetics, in good agreement with theoretical calculations, show surprisingly that hydrogen transfer from DME to methoxy species is 10 times faster than hydrogen transfer from methanol. This difference in reactivity causes the observed faster formation of hydrocarbons in dry feeds, when the concentration of methanol is lower than in presence of water. Importantly, the kinetic analysis of CH4 formation rates provides a unique quantitative parameter to characterize the activity of catalysts in the methanol-to-hydrocarbon process.
Collapse
|
14
|
A Kinetic Model Considering Catalyst Deactivation for Methanol-to-Dimethyl Ether on a Biomass-Derived Zr/P-Carbon Catalyst. MATERIALS 2022; 15:ma15020596. [PMID: 35057313 PMCID: PMC8781041 DOI: 10.3390/ma15020596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/02/2022]
Abstract
A Zr-loaded P-containing biomass-derived activated carbon (ACPZr) has been tested for methanol dehydration between 450 and 550 °C. At earlier stages, methanol conversion was complete, and the reaction product was mainly dimethyl ether (DME), although coke, methane, hydrogen and CO were also observed to a lesser extent. The catalyst was slowly deactivated with time-on-stream (TOS), but maintained a high selectivity to DME (>80%), with a higher yield to this product than 20% for more than 24 h at 500 °C. A kinetic model was developed for methanol dehydration reaction, which included the effect of the inhibition of water and the deactivation of the catalyst by coke. The study of stoichiometric rates pointed out that coke could be produced through a formaldehyde intermediate, which might, alternatively, decompose into CO and H2. On the other hand, the presence of 10% water in the feed did not affect the rate of coke formation, but produced a reduction of 50% in the DME yield, suggesting a reversible competitive adsorption of water. A Langmuir–Hinshelwood reaction mechanism was used to develop a kinetic model that considered the deactivation of the catalyst. Activation energy values of 65 and 51 kJ/mol were obtained for DME and methane production in the temperature range from 450 °C to 550 °C. On the other hand, coke formation as a function of time on stream (TOS) was also modelled and used as the input for the deactivation function of the model, which allowed for the successful prediction of the DME, CH4 and CO yields in the whole evaluated TOS interval.
Collapse
|
15
|
Lissens MEML, Mendes PSF, Lei T, Sabbe MK, Thybaut JW. The intricacies of the “steady-state” regime in methanol-to-hydrocarbon experimentation over H-ZSM-5. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01306h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The operating conditions window and experimental procedures ensuring “steady-state” operation in methanol to hydrocarbon conversion have been experimentally determined over an H-ZSM-5 zeolite with considerable acidity (Si/Al = 40).
Collapse
Affiliation(s)
| | - Pedro S. F. Mendes
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Tingjun Lei
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Maarten K. Sabbe
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| |
Collapse
|
16
|
Ma H, Liao J, Wei Z, Tian X, Li J, Chen YY, Wang S, Wang H, Dong M, Qin Z, Wang J, Fan W. Trimethyloxonium ion – a zeolite confined mobile and efficient methyl carrier at low temperatures: a DFT study coupled with microkinetic analysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction network of ethene methylation over H-ZSM-5, including methanol dehydration, ethene methylation, and C3H7+ conversion, is investigated by employing a multiscale approach combining DFT calculations and microkinetic modeling.
Collapse
Affiliation(s)
- Hong Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Jian Liao
- School of Computer & Information Technology, Shanxi University, Taiyuan 030006, China
| | - Zhihong Wei
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xinxin Tian
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Junfen Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yan-Yan Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hao Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
17
|
Lee D, Kim JJ, Ali M, Choung JW, Lee WB, Bae JW, Park MJ. Mechanistic kinetic modeling for catalytic conversion of DME to gasoline-range hydrocarbons over nanostructured ZSM-5. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00616b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new kinetic model for the synthesis of gasoline-range hydrocarbons from dimethyl ether over a nanostructured ZSM-5 catalyst was developed based on the dual-cycle reaction mechanism.
Collapse
Affiliation(s)
- Damin Lee
- School of Chemical & Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Jin Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Mansoor Ali
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | | | - Won Bo Lee
- School of Chemical & Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Wook Bae
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Myung-June Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
18
|
Cordero-Lanzac T, Martínez C, Aguayo AT, Castaño P, Bilbao J, Corma A. Activation of n-pentane while prolonging HZSM-5 catalyst lifetime during its combined reaction with methanol or dimethyl ether. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Taylor CN, Urban-Klaehn J, Le TT, Zaleski R, Rimer JD, Gering KL. Catalyst Deactivation Probed by Positron Annihilation Spectroscopy. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chase N. Taylor
- Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| | | | - Thuy T. Le
- Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Radoslaw Zaleski
- Maria Curie-Sklodowska University, Institute of Physics, Lublin 20-031, Poland
| | - Jeffrey D. Rimer
- Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Kevin L. Gering
- Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| |
Collapse
|
20
|
Le TT, Shilpa K, Lee C, Han S, Weiland C, Bare SR, Dauenhauer PJ, Rimer JD. Core-shell and egg-shell zeolite catalysts for enhanced hydrocarbon processing. J Catal 2021. [DOI: 10.1016/j.jcat.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Comparing alkene-mediated and formaldehyde-mediated diene formation routes in methanol-to-olefins catalysis in MFI and CHA. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Lin S, Zhi Y, Chen W, Li H, Zhang W, Lou C, Wu X, Zeng S, Xu S, Xiao J, Zheng A, Wei Y, Liu Z. Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction. J Am Chem Soc 2021; 143:12038-12052. [PMID: 34319735 DOI: 10.1021/jacs.1c03475] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The industrially important methanol-to-hydrocarbons (MTH) reaction is driven and sustained by autocatalysis in a dynamic and complex manner. Hitherto, the entire molecular routes and chemical nature of the autocatalytic network have not been well understood. Herein, with a multitechnique approach and multiscale analysis, we have obtained a full theoretical picture of the domino cascade of autocatalytic reaction network taking place on HZSM-5 zeolite. The autocatalytic reaction is demonstrated to be plausibly initiated by reacting dimethyl ether (DME) with the surface methoxy species (SMS) to generate the initial olefins, as evidenced by combining the kinetic analysis, in situ DRIFT spectroscopy, 2D 13C-13C MAS NMR, electronic states, and projected density of state (PDOS) analysis. This process is operando tracked and visualized at the picosecond time scale by advanced ab initio molecular dynamics (AIMD) simulations. The initial olefins ignite autocatalysis by building the first autocatalytic cycle-olefins-based cycle-followed by the speciation of methylcyclopentenyl (MCP) and aromatic cyclic active species. In doing so, the active sites accomplish the dynamic evolution from proton acid sites to supramolecular active centers that are experimentally identified with an ever-evolving and fluid feature. The olefins-guided and cyclic-species-guided catalytic cycles are interdependently linked to forge a previously unidentified hypercycle, being composed of one "selfish" autocatalytic cycle (i.e., olefins-based cycle with lighter olefins as autocatalysts for catalyzing the formation of olefins) and three cross-catalysis cycles (with olefinic, MCP, and aromatic species as autocatalysts for catalyzing each other's formation). The unraveled dynamic autocatalytic cycles/network would facilitate the catalyst design and process control for MTH technology.
Collapse
Affiliation(s)
- Shanfan Lin
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuchun Zhi
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Wei Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Huan Li
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Wenna Zhang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Caiyi Lou
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xinqiang Wu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Shu Zeng
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jianping Xiao
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
23
|
Li T, Shoinkhorova T, Gascon J, Ruiz-Martínez J. Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01422] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Teng Li
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Tuiana Shoinkhorova
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz-Martínez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Seifert M, Jonscher C, Haufe LA, Weigand JJ. Deactivation Kinetics of ZSM‐5 by Coke in Ethanol‐to‐Hydrocarbons Process. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Seifert
- Technische Universität Dresden Faculty of Chemistry and Food Chemistry 01062 Dresden Germany
| | - Clemens Jonscher
- Technische Universität Dresden Faculty of Chemistry and Food Chemistry 01062 Dresden Germany
| | - Liane A. Haufe
- Technische Universität Dresden Faculty of Chemistry and Food Chemistry 01062 Dresden Germany
| | - Jan J. Weigand
- Technische Universität Dresden Faculty of Chemistry and Food Chemistry 01062 Dresden Germany
| |
Collapse
|
25
|
Sadeghpour P, Haghighi M, Ebrahimi A. Ultrasound-assisted rapid hydrothermal design of efficient nanostructured MFI-Type aluminosilicate catalyst for methanol to propylene reaction. ULTRASONICS SONOCHEMISTRY 2021; 72:105416. [PMID: 33360534 PMCID: PMC7803814 DOI: 10.1016/j.ultsonch.2020.105416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The influence of ultrasound-assisted rapid hydrothermal synthesis of aluminosilicate ZSM-5 catalysts was examined in this work. A series of MFI-type nanostructured materials with sonochemical approach and conventionalheating were synthesized and evaluated for conversion of methanol to propylene reaction. The prepared samples were tested by characterization analyses such as XRD, FESEM, BET-BJH, FTIR, TPD-NH3 and TG/DTG. The obtained results confirmed that ultrasound treatment enhanced the nucleation process and crystal growth for ZSM-5 sample synthesized at moderate temperature of 250 °C. Therefore, it was found the formation of pure MFI zeolite with high crystallinity and improved textural, structural and acidic properties for ZSM-5(UH-250) sample compared with the other zeolites. This observation was attributed to the relationship between the perfect crystallization mechanism and catalytic properties, which led to producing an efficient MFI zeolite toward the optimal catalytic performance. In this manner, the methanol conversion and products selectivity of prepared materials were carried out in MTP reaction at 460 °C and atmospheric pressure. The ZSM-5(UH-250) zeolite with slower deactivation regime exhibited the constant level of methanol conversion (84%) and high propylene selectivity (78%) after 2100 min time on stream. Moreover, the synthesis pathway for MFI zeolite at moderate temperature and also deactivation mechanism of improved sample were proposed.
Collapse
Affiliation(s)
- Parisa Sadeghpour
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Mohammad Haghighi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Alireza Ebrahimi
- Chemical Engineering Faculty, Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O.Box 51335-1996, Sahand New Town, Tabriz, Iran
| |
Collapse
|
26
|
Foley BL, Johnson BA, Bhan A. Kinetic Evaluation of Deactivation Pathways in Methanol-to-Hydrocarbon Catalysis on HZSM-5 with Formaldehyde, Olefinic, Dieneic, and Aromatic Co-Feeds. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon L. Foley
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Blake A. Johnson
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Ticali P, Salusso D, Ahmad R, Ahoba-Sam C, Ramirez A, Shterk G, Lomachenko KA, Borfecchia E, Morandi S, Cavallo L, Gascon J, Bordiga S, Olsbye U. CO 2 hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO 2/zeolite catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01550d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tandem process of carbon dioxide hydrogenation to methanol and its conversion to hydrocarbons over mixed metal/metal oxide-zeotype catalysts is a promising path to CO2 valorization.
Collapse
|
28
|
Conversion of dimethyl ether to liquid hydrocarbons on zeolite catalysts: Influence of a base admixture in the zeolite. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Matieva ZM, Snatenkova YM, Kolesnichenko NV, Maksimov AL. Conversion of Dimethyl Ether to a Triptane-Enriched Mixture of Liquid Hydrocarbons: Influence of Modifier and Reaction Conditions. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220080200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Wodarz S, Slaby NA, Zimmermann MC, Otto TN, Holzinger J, Skibsted J, Zevaco TA, Pitter S, Sauer J. Shaped Hierarchical H-ZSM-5 Catalysts for the Conversion of Dimethyl Ether to Gasoline. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon Wodarz
- Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nikolaj A. Slaby
- Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael C. Zimmermann
- Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas N. Otto
- Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Julian Holzinger
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Jørgen Skibsted
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Thomas A. Zevaco
- Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stephan Pitter
- Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology (KIT), Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
32
|
Foley BL, Bhan A. Transient and Steady-State Kinetic Studies of Formaldehyde Alkylation of Benzene to Form Diphenylmethane on HZSM-5 Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon L. Foley
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Fečík M, Plessow PN, Studt F. A Systematic Study of Methylation from Benzene to Hexamethylbenzene in H-SSZ-13 Using Density Functional Theory and Ab Initio Calculations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michal Fečík
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, Karlsruhe 76131, Germany
| |
Collapse
|
34
|
Zhou W, Zhou C, Yin H, Shi J, Zhang G, Zheng X, Min X, Zhang Z, Cheng K, Kang J, Zhang Q, Wang Y. Direct conversion of syngas into aromatics over a bifunctional catalyst: inhibiting net CO 2 release. Chem Commun (Camb) 2020; 56:5239-5242. [PMID: 32270144 DOI: 10.1039/d0cc00608d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tandem catalysis via methanol intermediate is a promising route for the direct conversion of syngas into aromatics. However, the simultaneous formation of CO2 is a serious problem. Here, we demonstrate that CO2 was formed by the water-gas shift (WGS) reaction (CO + H2O → CO2 + H2) over a ZnO-ZrO2/H-ZSM-5 catalyst, and the net CO2 formation could be inhibited without affecting the formation of aromatics by co-feeding CO2.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Cheng Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Haoren Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Jiaqing Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Guoquan Zhang
- State Energy Key Lab of Clean Coal Grading Conversion Shaanxi Coal and Chemical Technology Institute Co., Ltd, Xi'an 710070, P. R. China
| | - Xinlei Zheng
- State Energy Key Lab of Clean Coal Grading Conversion Shaanxi Coal and Chemical Technology Institute Co., Ltd, Xi'an 710070, P. R. China
| | - Xiaojian Min
- State Energy Key Lab of Clean Coal Grading Conversion Shaanxi Coal and Chemical Technology Institute Co., Ltd, Xi'an 710070, P. R. China
| | - Zhiqiang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Jincan Kang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethersand Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
35
|
Redekop EA, Lazzarini A, Bordiga S, Olsbye U. A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defined pool of methylating species on ZSM-22 zeolite. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Synthesis of liquid hydrocarbons enriched with triptane via dimethyl ether conversion over combined catalyst. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2819-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Wen W, Yu S, Zhou C, Ma H, Zhou Z, Cao C, Yang J, Xu M, Qi F, Zhang G, Pan Y. Formation and Fate of Formaldehyde in Methanol‐to‐Hydrocarbon Reaction: In Situ Synchrotron Radiation Photoionization Mass Spectrometry Study. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wu Wen
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Shengsheng Yu
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Chaoqun Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hao Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhongyue Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chuangchuang Cao
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jiuzhong Yang
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Minggao Xu
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Fei Qi
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guobin Zhang
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Yang Pan
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
38
|
DeLuca M, Janes C, Hibbitts D. Contrasting Arene, Alkene, Diene, and Formaldehyde Hydrogenation in H-ZSM-5, H-SSZ-13, and H-SAPO-34 Frameworks during MTO. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mykela DeLuca
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Christina Janes
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - David Hibbitts
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
39
|
Wen W, Yu S, Zhou C, Ma H, Zhou Z, Cao C, Yang J, Xu M, Qi F, Zhang G, Pan Y. Formation and Fate of Formaldehyde in Methanol‐to‐Hydrocarbon Reaction: In Situ Synchrotron Radiation Photoionization Mass Spectrometry Study. Angew Chem Int Ed Engl 2020; 59:4873-4878. [DOI: 10.1002/anie.201914953] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Wu Wen
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Shengsheng Yu
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Chaoqun Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hao Ma
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhongyue Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chuangchuang Cao
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jiuzhong Yang
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Minggao Xu
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Fei Qi
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guobin Zhang
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Yang Pan
- National Synchrotron Radiation LaboratoryUniversity of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
40
|
Kolesnichenko NV, Ezhova NN, Snatenkova YM. Lower olefins from methane: recent advances. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Modern methods for methane conversion to lower olefins having from 2 to 4 carbon atoms per molecule are generalized. Multistage processing of methane into ethylene and propylene via syngas or methyl chloride and methods for direct conversion of CH4 to ethylene are described. Direct conversion of syngas to olefins as well as indirect routes of the process via methanol or dimethyl ether are considered. Particular attention is paid to innovative methods of olefin synthesis. Recent achievements in the design of catalysts and development of new techniques for efficient implementation of oxidative coupling of methane and methanol conversion to olefins are analyzed and systematized. Advances in commercializing these processes are pointed out. Novel catalysts for Fischer – Tropsch synthesis of lower olefins from syngas and for innovative technique using oxide – zeolite hybrid catalytic systems are described. The promise of a new route to lower olefins by methane conversion via dimethyl ether is shown. Prospects for the synthesis of lower olefins via methyl chloride and using non-oxidative coupling of methane are discussed. The most efficient processes used for processing of methane to lower olefins are compared on the basis of degree of conversion of carbonaceous feed, possibility to integrate with available full-scale production, number of reaction stages and thermal load distribution.
The bibliography includes 346 references.
Collapse
|
41
|
Ahoba-Sam C, Borfecchia E, Lazzarini A, Bugaev A, Isah AA, Taoufik M, Bordiga S, Olsbye U. On the conversion of CO2 to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty? Catal Sci Technol 2020. [DOI: 10.1039/d0cy00440e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Zn was found to possess a dual role in composite PdZn–H-ZSM-5 catalysts for CO2 hydrogenation reactions: it promotes methanol formation when alloyed with Pd, but inhibits hydrocarbon formation by ion exchange with Brønsted acid sites in H-ZSM-5.
Collapse
Affiliation(s)
- Christian Ahoba-Sam
- SMN Centre for Materials Science and Nanotechnology
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| | - Elisa Borfecchia
- Department of Chemistry
- NIS Center and INSTM Reference Center
- University of Turin
- Turin
- Italy
| | - Andrea Lazzarini
- SMN Centre for Materials Science and Nanotechnology
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| | - Aram Bugaev
- The Smart Materials Research Institute
- Southern Federal University
- Rostov-on-Don
- Russia
- Southern Scientific Centre
| | | | - Mostafa Taoufik
- Université Lyon 1
- Institut de Chimie Lyon
- CPE Lyon CNRS
- UMR 5265 C2P2
- LCOMS
| | - Silvia Bordiga
- SMN Centre for Materials Science and Nanotechnology
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| | - Unni Olsbye
- SMN Centre for Materials Science and Nanotechnology
- Department of Chemistry
- University of Oslo
- N-0315 Oslo
- Norway
| |
Collapse
|
42
|
Ortega C, Kolb G. DME-to-Hydrocarbon over an MFI Zeolite: Product Selectivity Controlled by Oxygenates under the Kinetic Regime. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos Ortega
- Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Gunther Kolb
- Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Fraunhofer IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| |
Collapse
|
43
|
Li M, Zhang Y, Luo Y, Shu X. In situ rejuvenation on deactivated ZSM-5 zeolites by toluene during methanol to propylene reaction. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Valecillos J, Manzano H, Aguayo AT, Bilbao J, Castaño P. Kinetic and Deactivation Differences Among Methanol, Dimethyl Ether and Chloromethane as Stock for Hydrocarbons. ChemCatChem 2019. [DOI: 10.1002/cctc.201901204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- José Valecillos
- Department of Chemical EngineeringUniversity of the Basque Country (UPV/EHU) P.O. Box 644 Bilbao 48080 Spain
| | - Hegoi Manzano
- Department of Condensed Matter PhysicsUniversity of the Basque Country (UPV/EHU) P.O. Box 644 Bilbao 48080 Spain
| | - Andrés T. Aguayo
- Department of Chemical EngineeringUniversity of the Basque Country (UPV/EHU) P.O. Box 644 Bilbao 48080 Spain
| | - Javier Bilbao
- Department of Chemical EngineeringUniversity of the Basque Country (UPV/EHU) P.O. Box 644 Bilbao 48080 Spain
| | - Pedro Castaño
- Department of Chemical EngineeringUniversity of the Basque Country (UPV/EHU) P.O. Box 644 Bilbao 48080 Spain
- Multiscale Reaction Engineering KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
45
|
Hwang A, Bhan A. Deactivation of Zeolites and Zeotypes in Methanol-to-Hydrocarbons Catalysis: Mechanisms and Circumvention. Acc Chem Res 2019; 52:2647-2656. [PMID: 31403774 DOI: 10.1021/acs.accounts.9b00204] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Solid catalysts deployed in industrial processes often undergo deactivation, requiring frequent replacement or regeneration to recover the loss in activity. Regeneration occurs under conditions distinct from, and typically more harsh than, the catalysis, placing strict requirements on physicochemical material properties that divert catalyst optimization toward addressing regenerability over high activity and selectivity. Deactivation arises from mechanical, structural, or chemical modifications to active sites, promoters, and their surrounding matrices, and the prevailing mechanism for deactivation varies with the reaction, the catalyst, and the reaction conditions. Methanol-to-hydrocarbons processes utilize zeolites and zeotypes-crystalline, microporous oxides widely deployed as catalysts in the refining and petrochemical industries-as solid acid catalysts. Deposition and growth of highly unsaturated carbonaceous residues within the micropores congest molecular transport and block active sites, resulting in deactivation. In this Account, we describe studies probing the underlying mechanisms of deactivation in methanol-to-hydrocarbons catalysis and discuss examples of leveraging the acquired mechanistic insights to mitigate deactivation and prolong catalyst lifetime. These fundamental principles governing carbon deposition within zeolites and zeotypes provide opportunity to broaden versatility of processes for C1 valorization and to relax constraints imposed by hydrothermal catalyst stability considerations to achieve more active and more selective catalysis. Methanol-to-hydrocarbons catalysis occurs via a chain carrier mechanism. A zeolite/zeotype cavity hosts an unsaturated hydrocarbon guest to together constitute the supramolecular chain carrier that engages in a complex network of reactions for chain carrier propagation. Productive propagation reactions include olefin methylation, aromatic methylation, and aromatic dealkylation. Methanol undergoes unproductive dehydrogenation to formaldehyde via methanol disproportionation and olefin transfer hydrogenation. Subsequent alkylation reactions between formaldehyde and active olefinic/aromatic cocatalysts instigate cascades for dehydrocyclization, resulting in the formation of inactive polycyclic aromatic hydrocarbons and termination of the chain carrier. Addition of a distinct catalytic function that selectively decomposes formaldehyde mitigates chain carrier termination without disrupting the high selectivity to ethylene and propylene in methanol-to-hydrocarbons catalysis on small-pore zeolites and zeotypes. The efficacy of this bifunctional strategy to prolong catalyst lifetime increases with increasing proximity between the active sites for formaldehyde decomposition and the H+ sites of the zeolite/zeotype. Coprocessing sacrifical hydrogen donors mitigates chain carrier termination by intercepting, via saturation, intermediates along dehydrocyclization cascades. This strategy increases in efficacy with increasing concentration of the hydrogen donor and provides opportunity to realize steady-state methanol-to-hydrocarbons catalysis on small-pore zeolites and zeotypes.
Collapse
Affiliation(s)
- Andrew Hwang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Zimmermann MC, Otto TN, Wodarz S, Zevaco TA, Pitter S. Mesoporous H‐ZSM‐5 for the Conversion of Dimethyl Ether to Hydrocarbons. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael C. Zimmermann
- Karlsruher Institut für Technologie (KIT)Institut für Katalyseforschung und -technologie (IKFT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Thomas N. Otto
- Karlsruher Institut für Technologie (KIT)Institut für Katalyseforschung und -technologie (IKFT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Simon Wodarz
- Karlsruher Institut für Technologie (KIT)Institut für Katalyseforschung und -technologie (IKFT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Thomas A. Zevaco
- Karlsruher Institut für Technologie (KIT)Institut für Katalyseforschung und -technologie (IKFT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Stephan Pitter
- Karlsruher Institut für Technologie (KIT)Institut für Katalyseforschung und -technologie (IKFT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
47
|
Foley BL, Johnson BA, Bhan A. A Method for Assessing Catalyst Deactivation: A Case Study on Methanol-to-Hydrocarbons Conversion. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon L. Foley
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Blake A. Johnson
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
48
|
Lee S, Choi M. Unveiling coke formation mechanism in MFI zeolites during methanol-to-hydrocarbons conversion. J Catal 2019. [DOI: 10.1016/j.jcat.2019.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Lee MK, Kim J, Ryu JH, Yoon YS, Kim CU, Jeong SY, Lee IB. Modeling of Reaction and Deactivation Kinetics in Methanol-to-Olefins Reaction on SAPO-34. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min-Kyung Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Jinsu Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Jun-Hyung Ryu
- Department of Energy System Engineering, Dongguk University, 123, Dongdae-ro, Gyeongju 38066, South Korea
| | - Young-Seek Yoon
- Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Chul-Ung Kim
- Korea Research Institute of Chemical Technology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Soon-Yong Jeong
- Korea Research Institute of Chemical Technology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - In-Beum Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| |
Collapse
|
50
|
Matieva ZM, Snatenkova YM, Kolesnichenko NV, Khadzhiev SN. Catalysts for Synthesizing Liquid Hydrocarbons from Methanol and Dimethyl Ether: A Review. CATALYSIS IN INDUSTRY 2019. [DOI: 10.1134/s2070050419020089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|