1
|
Mohan H, Vadivel S, Lee SW, Lim JM, Lovanh N, Park YJ, Shin T, Seralathan KK, Oh BT. Improved visible-light-driven photocatalytic removal of Bisphenol A using V 2O 5/WO 3 decorated over Zeolite: Degradation mechanism and toxicity. ENVIRONMENTAL RESEARCH 2022; 212:113136. [PMID: 35351453 DOI: 10.1016/j.envres.2022.113136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
WO3/Zeolite/V2O5 (TZV) composite synthesized through co-precipitation was used for the degradation of Bisphenol-A (BpA). XRD and Raman spectra were employed to ascertain the crystallinity of the composite. The pristine nature of the compound without any free particles over the zeolite surface was established through FESEM, thus, substantiating the composite character of the material. The enhancement in activity after doping with WO3 was ascertained by DRS-UV. Photocatalytic degradation studies clearly established the superiority of TZV 10 over bare V2O5. Complete BpA degradation (100%) was attained at 50 min of incubation with 0.75 g/L TZV-10 in acidic medium (pH 3) for an initial BpA concentration of 100 mg/L. HPLC-MS/MS analysis was used to decipher the degradation pathway. The catalyst was stable even after 9 cycles. Phytotoxicity studies and lake water treatment results proved the environmental efficiency of the synthesized material.
Collapse
Affiliation(s)
- Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea; Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju, Jeonbuk, 54930, South Korea
| | - Sethumathavan Vadivel
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Nanh Lovanh
- USDA-ARS, AWMRU, 230 Bennett Lane, Bowling Green, KY, 42104, USA
| | - Yool-Jin Park
- Department of Ecology Landscape Architecture-Design, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea
| | - Taeho Shin
- Department of Chemistry, College of Natural Sciences, Jeonbuk National University, Jeonju, Jeonbuk, 54930, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, South Korea.
| |
Collapse
|
2
|
Zhao J, Wang J, Brock AJ, Zhu H. Plasmonic heterogeneous catalysis for organic transformations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Deng L, Zou Y, Jiang J. Plasmonic MoO 2 embedded MoNi 4 nanosheets prepared by NiMoO 4 transformation for visible-light-enhanced 4-nitrophenol reduction. Dalton Trans 2021; 50:17235-17240. [PMID: 34784407 DOI: 10.1039/d1dt03216j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonic hybrid catalysts have attracted great interest for the reduction of nitrobenzene waste to valuable aminobenzene, because they can use renewable solar energy to accelerate the catalytic reaction. However, the economical synthesis of non-precious plasmonic hybrid catalysts remains a big challenge. Herein we report the synthesis of plasmonic MoO2-embedded MoNi4 nanosheets (MoNi4-MoO2) by thermal annealing of NiMoO4 at 600 °C under a hydrogen atmosphere. The MoNi4-MoO2 hybrid catalysts retain strong plasmon absorption from MoO2 and demonstrate good catalytic activity from MoNi4 for 4-nitrophenol reduction in the dark. Under visible light irradiation, the excitation of MoO2 plasmon promotes the catalytic reaction further due to hot electron-induced increase of catalytic activity of MoNi4. In addition, the hybrid catalysts are relatively stable even under illumination reaction conditions.
Collapse
Affiliation(s)
- Liujun Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yu Zou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jiang Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
4
|
Zhao J, Xue S, Ji R, Li B, Li J. Localized surface plasmon resonance for enhanced electrocatalysis. Chem Soc Rev 2021; 50:12070-12097. [PMID: 34533143 DOI: 10.1039/d1cs00237f] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalysis plays a vital role in energy conversion and storage in modern society. Localized surface plasmon resonance (LSPR) is a highly attractive approach to enhance the electrocatalytic activity and selectivity with solar energy. LSPR excitation can induce the transfer of hot electrons and holes, electromagnetic field enhancement, lattice heating, resonant energy transfer and scattering, in turn boosting a variety of electrocatalytic reactions. Although the LSPR-mediated electrocatalysis has been investigated, the underlying mechanism has not been well explained. Moreover, the efficiency is strongly dependent on the structure and composition of plasmonic metals. In this review, the currently proposed mechanisms for plasmon-mediated electrocatalysis are introduced and the preparation methods to design supported plasmonic nanostructures and related electrodes are summarized. In addition, we focus on the characterization strategies used for verifying and differentiating LSPR mechanisms involved at the electrochemical interface. Following that are highlights of representative examples of direct plasmonic metal-driven and indirect plasmon-enhanced electrocatalytic reactions. Finally, this review concludes with a discussion on the remaining challenges and future opportunities for coupling LSPR with electrocatalysis.
Collapse
Affiliation(s)
- Jian Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Rongrong Ji
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Bing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jinghong Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Verma P, Kondo Y, Kuwahara Y, Kamegawa T, Mori K, Raja R, Yamashita H. Design and application of photocatalysts using porous materials. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1948302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Priyanka Verma
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- School of Chemistry, University of Southampton, Southampton, UK
| | - Yoshifumi Kondo
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICB, Kyoto University, Kyoto, Japan
- Jst, Presto, Saitama, Japan
| | - Takashi Kamegawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICB, Kyoto University, Kyoto, Japan
| | - Robert Raja
- School of Chemistry, University of Southampton, Southampton, UK
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICB, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Selective Reductive Transformations of Organic Nitro Compounds in Heterogeneous Photocatalytic Systems: A Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Sun Q, Wang N, Xu Q, Yu J. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001818. [PMID: 32638425 DOI: 10.1002/adma.202001818] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Hydrogen has emerged as an environmentally attractive fuel and a promising energy carrier for future applications to meet the ever-increasing energy challenges. The safe and efficient storage and release of hydrogen remain a bottleneck for realizing the upcoming hydrogen economy. Hydrogen storage based on liquid-phase chemical hydrogen storage materials is one of the most promising hydrogen storage techniques, which offers considerable potential for large-scale practical applications for its excellent safety, great convenience, and high efficiency. Recently, nanopore-supported metal nanocatalysts have stood out remarkably in boosting the field of liquid-phase chemical hydrogen storage. Herein, the latest research progress in catalytic hydrogen production is summarized, from liquid-phase chemical hydrogen storage materials, such as formic acid, ammonia borane, hydrous hydrazine, and sodium borohydride, by using metal nanocatalysts confined within diverse nanoporous materials, such as metal-organic frameworks, porous carbons, zeolites, mesoporous silica, and porous organic polymers. The state-of-the-art synthetic strategies and advanced characterizations for these nanocatalysts, as well as their catalytic performances in hydrogen generation, are presented. The limitation of each hydrogen storage system and future challenges and opportunities on this subject are also discussed. References in related fields are provided, and more developments and applications to achieve hydrogen energy will be inspired.
Collapse
Affiliation(s)
- Qiming Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Recent Advances in Photocatalytic CO2 Utilisation Over Multifunctional Metal–Organic Frameworks. Catalysts 2020. [DOI: 10.3390/catal10101176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The efficient conversion of carbon dioxide (CO2) to high-value chemicals using renewable solar energy is a highly attractive but very challenging process that is used to address ever-growing energy demands and environmental issues. In recent years, metal–organic frameworks (MOFs) have received significant research attention owing to their tuneability in terms of their composition, structure, and multifunctional characteristics. The functionalisation of MOFs by metal nanoparticles (NPs) is a promising approach used to enhance their light absorption and photocatalytic activity. The efficient charge separation and strong CO2 binding affinity of hybrid MOF-based photocatalysts facilitate the CO2 conversion process. This review summarises the latest advancements involving noble metal, non-noble-metal, and miscellaneous species functionalised MOF-based hybrid photocatalysts for the reduction of CO2 to carbon monoxide (CO) and other value-added chemicals. The novel synthetic strategies and their corresponding structure–property relationships have also been discussed for solar-to-chemical energy conversion. Furthermore, the current challenges and prospects in practical applications are also highlighted for sustainable energy production.
Collapse
|
9
|
Verma P, Kuwahara Y, Mori K, Yamashita H. Visible-light-driven reduction of nitrostyrene utilizing plasmonic silver nanoparticle catalysts immobilized on oxide supports. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Verma P, Mori K, Kuwahara Y, Cho SJ, Yamashita H. Synthesis of plasmonic gold nanoparticles supported on morphology-controlled TiO2 for aerobic alcohol oxidation. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. NANOSCALE 2020; 12:11333-11363. [PMID: 32285073 DOI: 10.1039/d0nr00732c] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of advanced materials for heterogeneous catalytic applications requires fine control over the synthesis and structural parameters of the active site. Mesoporous silica materials have attracted increasing attention to be considered as an important class of nanostructured support materials in heterogeneous catalysis. Their large surface area, well-defined porous architecture and ability to incorporate metal atoms within the mesopores lead them to be a promising support material for designing a variety of different catalysts. In particular, SBA-15 mesoporous silica has its broad applicability in catalysis because of its comparatively thicker walls leading to higher thermal and mechanical stability. In this review article, various strategies to functionalize SBA-15 mesoporous silica have been reviewed with a view to evaluating its efficacy in different catalytic transformation reactions. Special attention has been given to the molecular engineering of the silica surface, within the framework and within the hexagonal mesoporous channels for anchoring metal oxides, single-site species and metal nanoparticles (NPs) serving as catalytically active sites.
Collapse
Affiliation(s)
- Priyanka Verma
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and School of Chemistry, University of Southampton, University Road, Highfield, Southampton, SO17 1 BJ, UK
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Robert Raja
- School of Chemistry, University of Southampton, University Road, Highfield, Southampton, SO17 1 BJ, UK
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
12
|
Mandal S, Adhikari S, Pu S, Wang X, Kim DH, Patel RK. Interactive Fe 2O 3/porous SiO 2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. CHEMOSPHERE 2019; 234:596-607. [PMID: 31229721 DOI: 10.1016/j.chemosphere.2019.06.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
A uniformly distributed mesoporous silica nanospheres has been successfully synthesized. Silica nanospheres have been loaded with different content of Fe2O3 nanoparticles synthesized by the sol-gel process followed by calcination to form the Fe2O3 supported on silica nanospheres composite. The as-synthesized photocatalyst has been characterized for crystal structure, morphology, stability, surface area and also surface composition was determined. The photocatalytic oxidation ability of the composite photocatalyst was evaluated by degrading aqueous solutions of Methylene Blue and Congo red dyes under visible light having intense absorption in the wavelength range between 550 and 560 nm. The prime significance of silica is to act as catalyst support for uniform distribution of hematite particles for enhanced catalytic reactivity. Highest degradation has been achieved with 20 wt % loading of hematite nanoparticles indicating the less agglomeration and availability of more catalytic sites. Furthermore, colorless organic pollutants 2-chlorophenol and 2, 4-dichlorophenol have been degraded with high efficiency in the presence of H2O2 oxidizer. The scavenger experiments confirmed that hydroxyl radicals are the majorly participating species in this catalytic system. The composite system also shows good recyclability of the materials and advocates the promising nature of the designed system for multiple hazardous environmental contaminants.
Collapse
Affiliation(s)
- Sandip Mandal
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China; Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Xiaoke Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Raj Kishore Patel
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
13
|
Hu Z, Mi Y, Ji Y, Wang R, Zhou W, Qiu X, Liu X, Fang Z, Wu X. Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu 2O core-shell nanorods. NANOSCALE 2019; 11:16445-16454. [PMID: 31441922 DOI: 10.1039/c9nr03943k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the critical challenges for semiconductor photocatalysis is the high efficiency utilization of solar energy. For plasmonic metal-semiconductor photocatalysts, the photocatalytic activity over an extended wavelength range for a photoresponsive semiconductor could be significantly improved either via the direct electron transfer (DET) or via the plasmon-induced resonant energy transfer (PIRET). Still, the narrow spectral overlap of plasmon and the semiconductor band edge is a key factor in restricting the development of PIRET. Herein, we have introduced a simple and versatile strategy to realize a broad spectral overlap by creating multipolar plasmon resonances near the semiconductor band edge. Cu2O coated Au/Ag nanorods (NRs) were prepared using a facile wet chemistry method. Transverse plasmon modes of Au/Ag/Cu2O NRs can split into dipole and octupole plasmon modes. The core aspect ratio and shell thickness could be used to regulate these two modes for extending the spectral overlap of plasmon resonance and the Cu2O band edge. Au/Ag/Cu2O NRs were found to display enhanced visible light photocatalytic activity compared to spherical Au/Ag/Cu2O nanoparticles. The enhancement mechanism was ascribed to both dipole and octupole plasmon modes boosting electron-hole separation in Cu2O via PIRET as confirmed by transient absorption measurements.
Collapse
Affiliation(s)
- Zhijian Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Mi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiya Zhou
- Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheyu Fang
- Institute of Physics, Peking University, Beijing 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Verma P, Kuwahara Y, Mori K, Yamashita H. Plasmonic catalysis of Ag nanoparticles deposited on CeO2 modified mesoporous silica for the nitrostyrene reduction under light irradiation conditions. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.06.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Verma P, Kuwahara Y, Mori K, Yamashita H. Design of Silver-Based Controlled Nanostructures for Plasmonic Catalysis under Visible Light Irradiation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Priyanka Verma
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyoto 606-8501, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyoto 606-8501, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Yamashita H, Mori K, Kuwahara Y, Kamegawa T, Wen M, Verma P, Che M. Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chem Soc Rev 2018; 47:8072-8096. [PMID: 29892768 DOI: 10.1039/c8cs00341f] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Silica-based micro-, meso-, macro-porous materials offer attractive routes for designing single-site photocatalysts, supporting semiconducting nanoparticles, anchoring light-responsive metal complexes, and encapsulating metal nanoparticles to drive photochemical reactions by taking advantage of their large surface area, controllable pore channels, remarkable transparency to UV/vis and tailorable physicochemical surface characteristics. This review mainly focuses on the fascinating photocatalytic properties of silica-supported Ti catalysts from single-site catalysts to nanoparticles, their surface-chemistry engineering, such as the hydrophobic modification and synthesis of thin films, and the fabrication of nanocatalysts including morphology controlled plasmonic nanostructures with localized surface plasmon resonance. The hybridization of visible-light responsive metal complexes with porous materials for the construction of functional inorganic-organic supramolecular photocatalysts is also included. In addition, the latest progress in the application of MOFs as excellent hosts for designing photocatalytic systems is described.
Collapse
Affiliation(s)
- Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lai B, Mei F, Gu Y. Bifunctional Solid Catalyst for Organic Reactions in Water: Simultaneous Anchoring of Acetylacetone Ligands and Amphiphilic Ionic Liquid "Tags" by Using a Dihydropyran Linker. Chem Asian J 2018; 13:2529-2542. [PMID: 29873190 DOI: 10.1002/asia.201800567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/17/2018] [Indexed: 01/18/2023]
Abstract
The use of solid catalysts to promote organic reactions in water faces the inherent difficulty of the poor mass-transfer efficiency of organic substances in water, which is often responsible for insufficient reaction and low yields. To solve this problem, the solid surface can be manipulated to become amphiphilic. However, the introduction of surfactant-like moieties onto the surface of silica-based materials is not easy. By using an accessible dihydropyran derivative as a grafting linker, a surfactant-combined bifunctional silica-based solid catalyst that possessed an ionic liquid tail and a metal acetylacetonate moiety was prepared through a mild Lewis-acid-catalyzed ring-opening reaction with a thiol-functionalized silica. The surfactant-combined silica-supported metal acetylacetone catalysts displayed excellent catalytic activity in water for a range of reactions. The solid catalyst was also shown to be recyclable, and was reused several times without significant loss in activity.
Collapse
Affiliation(s)
- Bingbing Lai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Fuming Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|