1
|
Guan Y, Su D, Zhang Y, Zhang B, Liu Y, Liu P, Ban L, Qin T, Wang K, Chu G, Liu X, He J. Ligand Effect of PdRu on Pt-Enriched Surface for Glucose Complete Electro-Oxidation to Carbon Dioxide and Abiotic Direct Glucose Fuel Cells. CHEMSUSCHEM 2025; 18:e202401108. [PMID: 39022814 DOI: 10.1002/cssc.202401108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
The development of advanced electrocatalysts for the abiotic direct glucose fuel cells (ADGFCs) is critical in the implantable devices in living organisms. The ligand effect in the Pt shell-alloy core nanocatalysts is known to influence the electrocatalytic reaction in interfacial structure. Herein, we reported the synthesis of ternary Pt@PdRu nanoalloy aerogels with ligand effect of PdRu on Pt-enriched surface through electrochemical cycling. Pt@PdRu aerogels with optimized Pt surface electronic structure exhibited high mass activity and specific activity of Pt@PdRu about 450 mA mgPt -1 and 1.09 mA cm-2, which were 1.4 and 1.6 times than that of commercial Pt/C. Meanwhile, Pt@PdRu aerogels have higher electrochemical stability comparable to commercial Pt/C. In-situ FTIR spectra results proved that the glucose oxidation reaction on Pt@PdRu aerogels followed the CO-free direct pathway reaction mechanism and part of the products are CO2 by completed oxidation. Furthermore, the ADGFC with Pt@PdRu ultrathin anode catalyst layer showed a much higher power density of 6.2 mW cm-2 than commercial Pt/C (3.8 Mw cm-2). To simulate the blood fuel cell, the Pt@PdRu integrated membrane electrode assembly was exposed to glucose solution and a steady-state open circuit of approximately 0.6 V was achieved by optimizing the glucose concentration in cell system.
Collapse
Affiliation(s)
- Yichi Guan
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi, 844008, China
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Dezhi Su
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yan Zhang
- College of Chemistry, Research Center for Analytical Sciences, Central Laboratory, Nankai University, Tianjin, 300071, China
| | - Bowen Zhang
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi, 844008, China
| | - Yanyi Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Pengcheng Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lishou Ban
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tao Qin
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Kaili Wang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Ganghui Chu
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi, 844008, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jia He
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
2
|
Ipadeola AK, Abdelgawad A, Salah B, Abdullah AM, Eid K. Interfacial Engineering of Porous Pd/M (M = Au, Cu, Mn) Sponge-like Nanocrystals with a Clean Surface for Enhanced Alkaline Electrochemical Oxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13830-13840. [PMID: 37724885 DOI: 10.1021/acs.langmuir.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The interfacial engineering of Pd-based alloys (i.e., PdM with distinct morphologies, compositions, and strain defects) is an efficient way for enhanced catalytic activity; however, it remains a grand challenge to fabricate such alloys in aqueous solutions without heating, organic solvents, and multiple reaction steps. Herein, we present a simple, aqueous-phase, one-step, and ultrafast approach for the interfacial engineering of surfactant-free porous PdM (M = Cu, Au, and Mn) nanocrystals with well-controlled spongy-like morphology and compositions. The electronic interaction in PdM nanocrystals and their effect on the alkaline electrochemical ethanol oxidation reaction (EOR) are investigated using XRD, XPS, and electrochemical tests. Notably, integrating M metals into Pd atoms results in upshifting the d-band center of Pd and subsequently modulating the EOR activity and stability substantially. The EOR mass activity (10.78 A/mgPd (6.93 A/mgPdCu)) of PdCu was 1.83, 3.09, 4.51, and 53.90 times higher than those of AuPd (5.90 A/mgPd (3.27 A/mgAuPd)), PdMn (3.48 A/mgPd (3.19 A/mgPdMn)), Pd (2.39 A/mgPd), and Pd/C (0.20 A/mgPd), respectively, besides substantial durability after 1000 cycles. This is due to the porous two-dimensional morphology, a low synergetic effect, higher interfacial interaction, and greater active surface area of PdCu, besides a high Cu content with more oxophilicity that facilitates activation/dissociation of H2O to generate -OH species needed for quick EOR electrocatalysis. The electrochemical impedance spectroscopy (EIS) reveals better electrolyte/electrode interfacial interaction and lower charge transfer resistance on PdCu. The EOR activity of PdCu porous sponge-like nanocrystals was superior to all previously reported Pd-based alloys for electrochemical EOR. This study indicates that binary Pd-based catalysts with less synergetic effect are preferred for boosting the EOR activity, which could help in manipulating the surface properties of Pd-based alloys to optimize EOR performance.
Collapse
Affiliation(s)
- Adewale K Ipadeola
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Ahmed Abdelgawad
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Kamel Eid
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
3
|
Pramadewandaru RK, Lee YW, Hong JW. Synergistic effect of bimetallic Pd-Pt nanocrystals for highly efficient methanol oxidation electrocatalysts. RSC Adv 2023; 13:27046-27053. [PMID: 37693086 PMCID: PMC10486200 DOI: 10.1039/d3ra04837c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Metal nanocrystals (NCs) with controlled compositional and distributional structures have gained increasing attention due to their unique properties and broad applications, particularly in fuel cell systems. However, despite the significant importance of composition in metal NCs and their electrocatalytic behavior, comprehensive investigations into the relationship between atomic distribution and electrocatalytic activity remain scarce. In this study, we present the development of four types of nanocubes with similar sizes and controlled compositions (Pd-Pt alloy, Pd@Pt core-shell, Pd, and Pt) to investigate their influence on electrocatalytic performance for methanol oxidation reaction (MOR). The electrocatalytic activity and stability of these nanocubes exhibited variations based on their compositional structures, potentially affecting the interaction between the surface-active sites of the nanocrystals and reactive molecules. As a result, leveraging the synergistic effect of their alloy nanostructure, the Pd-Pt alloy nanocubes exhibited exceptional performance in MOR, surpassing the catalytic activity of other nanocubes, including Pd@Pt core-shell nanocubes, monometallic Pd and Pt nanocubes, as well as commercial Pd/C and Pt/C catalysts.
Collapse
Affiliation(s)
| | - Young Wook Lee
- Department of Education Chemistry and Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Republic of Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan Ulsan 44776 Republic of Korea
| |
Collapse
|
4
|
Lu Q, Gu X, Li J, Li W, Luque R, Eid K. Unraveling ultrasonic assisted aqueous-phase one-step synthesis of porous PtPdCu nanodendrites for methanol oxidation with a CO-poisoning tolerance. ULTRASONICS SONOCHEMISTRY 2023; 98:106494. [PMID: 37356216 PMCID: PMC10319326 DOI: 10.1016/j.ultsonch.2023.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The tailored design of tri-metallic Pt-based porous nanodendrites (PNDs) is crucial for green energy production technologies, ascribed to their fancy features, great surface areas, accessible active sites, and stability against aggregation. However, their aqueous-phase one-step synthesis at room temperature remains a daunting challenge. Herein, we present a facile, green, and template-free approach for the one-step synthesis of PtPdCu PNDs by ultrasonication of an aqueous solution of metal salts and Pluronic F127 at 25 ℃, based on natural isolation among nucleation and growth step driven by the disparate reduction kinetics of the metals and acoustic cavitation mechanism of ultrasonic waves. The resultant PtPdCu PNDs formed in a spatial nanodendritic shape with a dense array of branches, open corners, interconnected pores, high surface area (46.9 m2/g), and high Cu content (21 %). The methanol oxidation reaction (MOR) mass activity of PtPdCu PNDs (3.66 mA/µgPt) is 1.45, 2.73, and 2.83 times higher than those of PtPd PNDs, PtCu PNDs, and commercial Pt/C, respectively based on equivalent Pt mass, which is superior to previous PtPdCu catalysts reported elsewhere, besides a superior durability and CO-poisoning tolerance. This study may pave the way for the controlled fabrication of ternary Pt-based PNDs for various electrocatalytic applications.
Collapse
Affiliation(s)
- Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xilei Gu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaojiao Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenpeng Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
5
|
Ipadeola AK, Salah B, Ghanem A, Ahmadaliev D, Sharaf MA, Abdullah AM, Eid K. Unveiling the effect of shapes and electrolytes on the electrocatalytic ethanol oxidation activity of self-standing Pd nanostructures. Heliyon 2023; 9:e16890. [PMID: 37484255 PMCID: PMC10360946 DOI: 10.1016/j.heliyon.2023.e16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Morphologically controlled Pd-based nanocrystals are the most efficient strategies for improving the electrocatalytic ethanol oxidation reaction (EOR) performance; however, their morphological-EOR activity relationship and effect of electrolytes at a wide pH range are still ambiguous. Here, we have synthesized porous self-standing Pd clustered nanospheres (Pd-CNSs) and Pd nanocubes (Pd-NCBs) for the EOR in acidic (H2SO4), alkaline (KOH), and neutral (NaHCO3) electrolytes compared to commercial spherical-like Pd/C catalysts. The fabrication process comprises the ice-cooling reduction of Pd precursor by sodium borohydride (NaBH4) and l-ascorbic acid to form Pd-CNSs and Pd-NCBs, respectively. The EOR activity of Pd-CNSs significantly outperformed those of Pd-NCBs, and Pd/C in all electrolytes, but the EOR activity was better in KOH than in H2SO4 and NaHCO3. This is due to the 3D porous clustered nanospherical morphology that makes Pd active centers more accessible and maximizes their utilization during EOR. The EOR specific/mass activities of Pd-CNSs reached (8.51 mA/cm2/2.39 A/mgPd) in KOH, (2.98 mA/cm2/0.88 A/mgPd) in H2SO4, and (0.061 mA/cm2/0.0083 A/mgPd) in NaHCO3, in addition to stability after 1000 cycles. This study affirms that porous 3D spherical Pd nanostructures are preferred for the EOR than those of 0D spherical-like and multi-dimensional cube-like nanostructures.
Collapse
Affiliation(s)
- Adewale K. Ipadeola
- Center for Advanced Materials, Qatar University, Doha, 2713, Qatar
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha, 2713, Qatar
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Alaa Ghanem
- PVT-Lab, Production Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Doniyorbek Ahmadaliev
- Department of Chemical & Material Science Engineering of School of Engineering, New Uzbekistan University, Tashkent, 100007, Uzbekistan
| | - Mohammed A. Sharaf
- Department of Maritime Transportation Management Engineering, Istanbul University-Cerrahpasa, 34320, Avcilar/Istanbul, Turkey
- Mericler Inc. Educational Consulting, Esentepe, Yazarlar Sk. No 21, 34381, Sisli/Istanbul, Turkey
| | | | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
6
|
Harbin HJ, Unruh DK, Casadonte DJ, J. Khatib S. Sonochemically Prepared Ni-Based Perovskites as Active and Stable Catalysts for Production of CO x-Free Hydrogen and Structured Carbon. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hannah J. Harbin
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Daniel K. Unruh
- MATFab Facility, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Dominick J. Casadonte
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sheima J. Khatib
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
7
|
Yang Y, Tang J, Zhang J, Liu C, Huang J. Nano porous PtRu alloy catalyst with enhanced synergic effect for selective hydrogenation of chloronitrobenzene. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Lu Q, Abdelgawad A, Li J, Eid K. Non-Metal-Doped Porous Carbon Nitride Nanostructures for Photocatalytic Green Hydrogen Production. Int J Mol Sci 2022; 23:15129. [PMID: 36499453 PMCID: PMC9735614 DOI: 10.3390/ijms232315129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Photocatalytic green hydrogen (H2) production through water electrolysis is deemed as green, efficient, and renewable fuel or energy carrier due to its great energy density and zero greenhouse emissions. However, developing efficient and low-cost noble-metal-free photocatalysts remains one of the daunting challenges in low-cost H2 production. Porous graphitic carbon nitride (gCN) nanostructures have drawn broad multidisciplinary attention as metal-free photocatalysts in the arena of H2 production and other environmental remediation. This is due to their impressive catalytic/photocatalytic properties (i.e., high surface area, narrow bandgap, and visible light absorption), unique physicochemical durability, tunable electronic properties, and feasibility to synthesize in high yield from inexpensive and earth-abundant resources. The physicochemical and photocatalytic properties of porous gCNs can be easily optimized via the integration of earth-abundant heteroatoms. Although there are various reviews on porous gCN-based photocatalysts for various applications, to the best of our knowledge, there are no reviews on heteroatom-doped porous gCN nanostructures for the photocatalytic H2 evolution reaction (HER). It is essential to provide timely updates in this research area to highlight the research related to fabrication of novel gCNs for large-scale applications and address the current barriers in this field. This review emphasizes a panorama of recent advances in the rational design of heteroatom (i.e., P, O, S, N, and B)-doped porous gCN nanostructures including mono, binary, and ternary dopants for photocatalytic HERs and their optimized parameters. This is in addition to H2 energy storage, non-metal configuration, HER fundamental, mechanism, and calculations. This review is expected to inspire a new research entryway to the fabrication of porous gCN-based photocatalysts with ameliorated activity and durability for practical H2 production.
Collapse
Affiliation(s)
- Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ahmed Abdelgawad
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Jiaojiao Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Abdelgawad A, Salah B, Eid K, Abdullah AM, Al-Hajri RS, Al-Abri M, Hassan MK, Al-Sulaiti LA, Ahmadaliev D, Ozoemena KI. Pt-Based Nanostructures for Electrochemical Oxidation of CO: Unveiling the Effect of Shapes and Electrolytes. Int J Mol Sci 2022; 23:15034. [PMID: 36499359 PMCID: PMC9737813 DOI: 10.3390/ijms232315034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.
Collapse
Affiliation(s)
- Ahmed Abdelgawad
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
| | - Kamel Eid
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
| | | | - Rashid S. Al-Hajri
- Petroleum and Chemical Engineering Department, Sultan Qaboos University, Muscat 123, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Centre, Sultan Qaboos University, P.O. Box 17, PC 123, SQU, Al-Khoudh 123, Oman
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, PC 123, SQU, A-Khoudh 123, Oman
| | | | - Leena A. Al-Sulaiti
- Department of Mathematics, Statistics, and Physics, Qatar University, Doha 2713, Qatar
| | - Doniyorbek Ahmadaliev
- Andijan State Pedagogical Institute, Andijan 170100, Uzbekistan
- Presidential School in Andijan, Agency for Presidential Educational Institutions of the Republic of Uzbekistan, Andijan 170100, Uzbekistan
| | - Kenneth I. Ozoemena
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
10
|
Ipadeola AK, Eid K, Abdullah AM, Al-Hajri RS, Ozoemena KI. Pd/Ni-metal-organic framework-derived porous carbon nanosheets for efficient CO oxidation over a wide pH range. NANOSCALE ADVANCES 2022; 4:5044-5055. [PMID: 36504739 PMCID: PMC9680948 DOI: 10.1039/d2na00455k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/04/2022] [Indexed: 05/26/2023]
Abstract
Metal nanocrystal ornamented metal-organic frameworks (MOFs) are of particular interest in multidisciplinary applications; however, their electrocatalytic CO oxidation performance over wide pH ranges is not yet reported. Herein, Ni-MOF-derived hierarchical porous carbon nanosheets (Ni-MOF/PC) with abundant Ni-N x sites decorated with Pd nanocrystals (Pd/Ni-MOF/PC) were synthesized by microwave-irradiation (MW-I) followed by annealing at 900 °C and subsequent etching of Ni-MOF/C prior to Pd deposition. The fabrication mechanism comprises the generation of self-reduced reducing gases from triethylamine during the annealing and selective chemical etching of Ni, thereby facilitating the reduction of Ni-anchored MOF and Pd nanocrystal deposition with the aid of ethylene glycol and MW-I to yield Pd/Ni-N x enriched MOF/PC. The synthetic strategies endear the Pd/Ni-MOF/PC with unique physicochemical merits: abundant defects, interconnected pores, high electrical conductivity, high surface area, Ni-deficient but more active sites for Pd/Ni-N x in porous carbon nanosheets, and synergism. These merits endowed the CO oxidation activity and stability on Pd/Ni-MOF/PC substantially than those of Pd/Ni-MOF/C and Pd/C catalysts in wide pH conditions (i.e., KOH, HClO4, and NaHCO3). The CO oxidation activity study reveals the utilization of MOF/PC with metal nanocrystals (Pd/Ni) in CO oxidation catalysis.
Collapse
Affiliation(s)
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University Doha 2713 Qatar
| | | | - Rashid S Al-Hajri
- Petroleum and Chemical Engineering Department, Sultan Qaboos University Muscat Oman
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| |
Collapse
|
11
|
Ipadeola AK, Eid K, Abdullah AM, Ozoemena KI. Pd-Nanoparticles Embedded Metal-Organic Framework-Derived Hierarchical Porous Carbon Nanosheets as Efficient Electrocatalysts for Carbon Monoxide Oxidation in Different Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11109-11120. [PMID: 36040806 DOI: 10.1021/acs.langmuir.2c01841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rational synthesis of Co-ZIF-67 metal-organic framework (MOF)-derived carbon-supported metal nanoparticles is essential for various energy and environmental applications; however, their catalytic activity toward carbon monoxide (CO) oxidation in various electrolytes is not yet emphasized. Co-ZIF-67-derived hierarchical porous carbon nanosheet-supported Pd nanocrystals (Pd/ZIF-67/C) were prepared using a simple microwave-irradiation approach followed by carbonization and etching. Mechanistically, during microwave irradiation, triethyleneamine provides abundant reducing gases that promote the formation of Pd nanoparticles/Co-Nx in porous carbon nanosheets with the assistance of ethylene glycol and also form a multimodal pore size. The electrocatalytic CO oxidation activity and stability of Pd/ZIF-67/C outperformed those of commercial Pd/C and Pt/C catalysts by (4.2 and 4.4, 4.0 and 2.7, 3.59 and 2.7) times in 0.1 M HClO4, 0.1 M KOH, and 0.1 M NaHCO3, respectively, due to the catalytic properties of Pd besides the conductivity of Co-Nx active sites and delicate porous structures of ZIF-67. Notably, using Pd/ZIF-67/C results in a higher CO oxidation activity than Pd/C and Pt/C. This study may pave the way for using MOF-supported multi-metallic nanoparticles for CO oxidation electrocatalysis.
Collapse
Affiliation(s)
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa
| |
Collapse
|
12
|
Yang Y, Lin X, Tang J, Zhang J, Liu C, Huang J. Supported mesoporous Pt catalysts with excellent performance for toluene hydrogenation under low reaction pressure. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Facile One-step Aqueous-phase Synthesis of Porous PtBi Nanosponges for Efficient Electrochemical Methanol Oxidation with a High CO Tolerance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Deyab NM, Salem KE, Mokhtar AM, Ramadan M, Steegstra P, Hubin A, Delplancke M, Rahier H, Allam NK. Electrochemical Fabrication of Ternary Black Ti‐Mo‐Ni Oxide Nanotube Arrays for Enhanced Photoelectrochemical Water Oxidation. ChemistrySelect 2020. [DOI: 10.1002/slct.202003491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nourhan M. Deyab
- Energy Materials Laboratory, School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
- Department of Materials and Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Kholoud E. Salem
- Energy Materials Laboratory, School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
| | - Abdelrahman M. Mokhtar
- Energy Materials Laboratory, School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
| | - Mohamed Ramadan
- Energy Materials Laboratory, School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
| | - Patrick Steegstra
- Department of Materials and Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Annick Hubin
- Department of Materials and Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Marie‐Paule Delplancke
- 4MAT, Université Libre de Bruxelles ULB, avenue Roosevelt 50, CP 165/63, 1050 Brussels Belgium
| | - Hubert Rahier
- Department of Materials and Chemistry Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Nageh K. Allam
- Energy Materials Laboratory, School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
15
|
Wu F, Eid K, Abdullah AM, Niu W, Wang C, Lan Y, Elzatahry AA, Xu G. Unveiling One-Pot Template-Free Fabrication of Exquisite Multidimensional PtNi Multicube Nanoarchitectonics for the Efficient Electrochemical Oxidation of Ethanol and Methanol with a Great Tolerance for CO. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31309-31318. [PMID: 32538605 DOI: 10.1021/acsami.0c01668] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multidimensional bimetallic Pt-based nanoarchitectonics are highly promising in electrochemical energy conversion technologies because of their fancy structural merits and accessible active sites; however, hitherto their precise template-free fabrication remains a great challenge. We report a template-free solvothermal one-pot approach for the rational design of cocentric PtNi multicube nanoarchitectonics via adjusting the oleylamine/oleic acid ratio with curcumin. The obtained multidimensional PtNi multicubes comprise multiple small interlace-stacked nanocube subunits assembled in spatially porous branched nanoarchitectonics and bound by high-index facets. The synthetic mechanism is driven by spontaneous isolation among prompt nucleation and oriented attachment epitaxial growth. These inimitable architectural and compositional merits of PtNi multicubes endowed the ethanol oxidation mass and specific activity by 5.6 and 9.03 times than the Pt/C catalyst, respectively, along with the enhancement of methanol oxidation mass activity by 2.3 times. Moreover, PtNi multicubes showed superior durability and a higher tolerance for CO poisoning than the Pt/C catalyst. This work may pave the way for tailored preparation of Pt-based nanoarchitectonics for myriad catalytic reactions.
Collapse
Affiliation(s)
- Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Anhui 230026, China
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Kamel Eid
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | | | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Anhui 230026, China
| | - Chao Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yixiang Lan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
16
|
Wang Y, Jin L, Wang C, Du Y. Nitrogen-doped graphene nanosheets supported assembled Pd nanoflowers for efficient ethanol electrooxidation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Wang X, Yang C, Cao L, Liang HP. A facile solvothermal synthesis of Pt1.2Co/C bimetallic nanocrystals as efficient electrocatalysts for methanol oxidation and hydrogen evolution reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj00242a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A bimetallic alloyed Pt1.2Co/C catalyst, which exhibited superior electrocatalytic performance for both MOR and HER, was synthesized by a one-pot solvothermal approach.
Collapse
Affiliation(s)
- Xilong Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Chen Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
- Center of Materials Science and Optoelectronics Engineering
| | - Lijuan Cao
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
- Center of Materials Science and Optoelectronics Engineering
| | - Han-Pu Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
- Center of Materials Science and Optoelectronics Engineering
| |
Collapse
|
18
|
Wang H, Yin S, Li C, Deng K, Xu Y, Wang Z, Li X, Xue H, Wang L. All-metallic nanorattles consisting of a Pt core and a mesoporous PtPd shell for enhanced electrocatalysis. NANOTECHNOLOGY 2019; 30:475602. [PMID: 31426034 DOI: 10.1088/1361-6528/ab3c94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of nanorattles with controllable compositions and structures is very important for catalytic applications. Herein, we propose a facile method for synthesis of very unique all-metallic nanorattle consisting of a Pt core and a mesoporous PtPd shell (named Pt@mPtPd). Owing to its spatially and locally separated active inner Pt core and mesoporous PtPd shell, the Pt@mPtPd nanorattle shows the enhanced performance for oxygen reduction reaction. The newly designed Pt@mPtPd nanorattle is quite different from traditional nanorattles with porous carbon and silica shell in its catalytically functional mesoporous metallic shell. The proposed facile method is highly valuable for the design of all-metallic nanorattle with controllable compositions and desired functions.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing. Mikrochim Acta 2019; 186:664. [DOI: 10.1007/s00604-019-3772-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/16/2019] [Indexed: 11/24/2022]
|
20
|
|
21
|
Zheng W, Li Y, Lee LYS. Insights into the transition metal ion-mediated electrooxidation of glucose in alkaline electrolyte. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Eid K, Sliem MH, Al-Kandari H, Sharaf MA, Abdullah AM. Rational Synthesis of Porous Graphitic-like Carbon Nitride Nanotubes Codoped with Au and Pd as an Efficient Catalyst for Carbon Monoxide Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3421-3431. [PMID: 30715897 DOI: 10.1021/acs.langmuir.8b03588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The precise fabrication of efficient catalysts for CO oxidation is of particular interest in a wide range of industrial and environmental applications. Herein, a scalable method is presented for the controlled synthesis of graphitic-like porous carbon nitride nanotubes (gC3N4NTs) codoped with Au and Pd (Au/Pd/gC3N4NTs) as efficient catalysts for carbon monoxide (CO) conversion. This includes the activation of melamine with nitric acid in the presence of ethylene glycol and metal precursors followed by consecutive polymerization and carbonization. This drives the formation of porous one-dimensional gC3N4NT with an outstanding surface area of (320.6 m2 g-1) and an atomic-level distribution of Au and Pd. Intriguingly, the CO conversion efficiency of Au/Pd/gC3N4NTs was substantially greater than that for gC3N4NTs. The approach thus presented may provide new avenues for the utilization of gC3N4 doped with multiple metal-based catalysts for CO conversion reactions which had been rarely reported before.
Collapse
Affiliation(s)
- Kamel Eid
- Center for Advanced Materials , Qatar University , Doha 2713 , Qatar
| | - Mostafa H Sliem
- Center for Advanced Materials , Qatar University , Doha 2713 , Qatar
| | - Halema Al-Kandari
- Department of Health Environment , College of Health Sciences, Public Authority for Applied Education and Training , P.O. Box 1428, Faiha 72853 , Kuwait
| | - Mohammed A Sharaf
- Department of Maritime Transportation Management Engineering , İstanbul University-Cerrahpaşa , Avcilar, Istanbul 34320 , Turkey
| | | |
Collapse
|
23
|
Wang H, Yu H, Yin S, Li Y, Xue H, Li X, Xu Y, Wang L. One-step fabrication of bimetallic PtNi mesoporous nanospheres as an efficient catalyst for the oxygen reduction reaction. NANOSCALE 2018; 10:16087-16093. [PMID: 30109334 DOI: 10.1039/c8nr04526g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The controlled synthesis of Pt-based bimetallic porous nanostructures is highly important for the design of electrocatalysts with high performance. Herein, we report a one-step method for the direct synthesis of well-dispersed bimetallic PtNi mesoporous nanospheres (PtNi MNs) at high yield. Benefitting from the synergistic effect of composition (bimetallic PtNi) and structure (mesoporous and highly open structure), the as-obtained PtNi MNs exhibit superior catalytic activity and stability for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang H, Yu H, Li Y, Yin S, Xue H, Li X, Xu Y, Wang L. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction. NANOTECHNOLOGY 2018; 29:175403. [PMID: 29443007 DOI: 10.1088/1361-6528/aaaf3f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
Collapse
Affiliation(s)
- Hongjing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ahmad YH, Eid K, Mahmoud KA, Al-Qaradawi SY. Controlled design of PtPd nanodendrite ornamented niobium oxynitride nanosheets for solar-driven water splitting. NEW J CHEM 2018. [DOI: 10.1039/c8nj03411g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile road-map is developed for one-pot synthesis of PtPd nanodendrite ornamented niobium oxynitride nanosheets for efficient solar-driven water splitting.
Collapse
Affiliation(s)
- Yahia H. Ahmad
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Kamel Eid
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| | - Khaled A. Mahmoud
- Qatar Environment and Energy Research Institute (QEERI)
- Hamad Bin Khalifa University (HBKU)
- Doha
- Qatar
| | - Siham Y. Al-Qaradawi
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha 2713
- Qatar
| |
Collapse
|
26
|
Eid K, Ahmad YH, Yu H, Li Y, Li X, AlQaradawi SY, Wang H, Wang L. Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for CO-poisoning. NANOSCALE 2017; 9:18881-18889. [PMID: 29177288 DOI: 10.1039/c7nr07609f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Precise fabrication of porous ternary Pt-based nanodendrites is very important for electrochemical energy conversion owing to high surface area and great molecular accessibility of these nanodendrites. Herein, PtPdRu porous nanodendrites (PNDs) were prepared via a facile one-step ultrasonic irradiation approach at room temperature. Intriguingly, the ultrasonic irradiation drove the formation of PtPdRu PNDs with spatially interconnected porous structures, whereas magnetic stirring produced PtPdRu nanoflowers (NFs) with less porosity. The formation mechanism was ascribed to the acoustic cavitation effect and fast-reduction kinetics under sonication. The as-made PtPdRu PNDs displayed a superior catalytic performance towards ethanol oxidation reaction with a high tolerance for CO-poisoning as compared to PtPdRu NFs, PtPd NDs, and commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Kamel Eid
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Matin MA, Kumar A, Bhosale RR, Saleh Saad MAH, Almomani FA, Al-Marri MJ. PdZn nanoparticle electrocatalysts synthesized by solution combustion for methanol oxidation reaction in an alkaline medium. RSC Adv 2017. [DOI: 10.1039/c7ra07013f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herein, we report the synthesis of PdZn nanoparticle (NP) electrocatalysts for the methanol oxidation reaction (MOR).
Collapse
Affiliation(s)
- M. A. Matin
- Department of Chemical Engineering
- Qatar University
- Doha
- Qatar
| | - A. Kumar
- Department of Chemical Engineering
- Qatar University
- Doha
- Qatar
| | - R. R. Bhosale
- Department of Chemical Engineering
- Qatar University
- Doha
- Qatar
| | | | - F. A. Almomani
- Department of Chemical Engineering
- Qatar University
- Doha
- Qatar
| | - M. J. Al-Marri
- Department of Chemical Engineering
- Qatar University
- Doha
- Qatar
- Gas Processing Center
| |
Collapse
|