1
|
Li Y, Li H, Li G, Wang D, Wang S, Zhao X. Low-temperature N-anchored ordered Pt 3Co intermetallic nanoparticles as electrocatalysts for methanol oxidation reaction. NANOSCALE 2022; 14:14199-14211. [PMID: 36125088 DOI: 10.1039/d2nr04316e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To enhance nanocatalyst performance and durability for the methanol oxidation reaction (MOR) in a direct methanol fuel cell, small-sized (2.1 nm) and structurally ordered Pt3Co intermetallic nanoparticles are uniformly anchored onto nitrogen-doped carbon nanotubes (N-CNTs) via a low-temperature N-anchoring method, and the N-doping abilities of different N-containing reagents are compared. After investigating the microstructure of Pt3Co/N-CNTs and evaluating their catalytic activity for the MOR, the results show that N-doping facilitates the uniform loading of Pt3Co NPs and plays a crucial role in improving the electrocatalytic activity of Pt3Co NPs supported on CNTs. Pt3Co/N-CNT-M with melamine as the N dopant exhibits the highest MOR activity and stability among all N-CNT-supported Pt3Co NPs and Pt/N-CNT-M. Density functional theory calculations suggest that the doping of N enhances the binding energy of CNTs to Pt3Co NPs, and the MOR mechanism shows that the introduction of Co is the reason for the enhancement of MOR reaction kinetics. The excellent electrochemical performance of Pt3Co/N-CNT-M is mainly attributed to the synergistic effect of N and Pt3Co intermetallic nanoparticles. The combination of ordered alloy nanoparticles and high-performance carrier N-CNT-M described herein exhibits great potential for fuel cells and may provide an unequivocal direction for the optimization of catalyst performance.
Collapse
Affiliation(s)
- Yanru Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Hongwei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Guixian Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Dongliang Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Shoudeng Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| | - Xinhong Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| |
Collapse
|
2
|
Tong Y, Yan X, Liang J, Dou SX. Metal-Based Electrocatalysts for Methanol Electro-Oxidation: Progress, Opportunities, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904126. [PMID: 31608601 DOI: 10.1002/smll.201904126] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Direct methanol fuel cells (DMFCs) are among the most promising portable power supplies because of their unique advantages, including high energy density/mobility of liquid fuels, low working temperature, and low emission of pollutants. Various metal-based anode catalysts have been extensively studied and utilized for the essential methanol oxidation reaction (MOR) due to their superior electrocatalytic performance. At present, especially with the rapid advance of nanotechnology, enormous efforts have been exerted to further enhance the catalytic performance and minimize the use of precious metals. Constructing multicomponent metal-based nanocatalysts with precisely designed structures can achieve this goal by providing highly tunable compositional and structural characteristics, which is promising for the modification and optimization of their related electrochemical properties. The recent advances of metal-based electrocatalytic materials with rationally designed nanostructures and chemistries for MOR in DMFCs are highlighted and summarized herein. The effects of the well-defined nanoarchitectures on the improved electrochemical properties of the catalysts are illustrated. Finally, conclusive perspectives are provided on the opportunities and challenges for further refining the nanostructure of metal-based catalysts and improving electrocatalytic performance, as well as the commercial viability.
Collapse
Affiliation(s)
- Yueyu Tong
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Xiao Yan
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Ji Liang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
3
|
Abarca G, Gonçalves WDG, Albuquerque BL, Dupont J, Prechtl MHG, Scholten JD. Bimetallic RuPd nanoparticles in ionic liquids: selective catalysts for the hydrogenation of aromatic compounds. NEW J CHEM 2021. [DOI: 10.1039/d0nj02674c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bimetallic RuPd nanoparticles are effective catalysts for the hydrogenation of aromatic compounds and the activity and selectivity depend on the Ru : Pd ratio.
Collapse
Affiliation(s)
- Gabriel Abarca
- Instituto de Química, UFRGS
- Porto Alegre
- Brazil
- Universidad Bernardo O’Higgins
- Escuela de Obstetricia y Puericultura
| | | | | | | | - Martin H. G. Prechtl
- Universität zu Köln
- Department of Chemistry
- D-50939 Köln
- Germany
- Instituto Superior Técnico
| | | |
Collapse
|
4
|
Pan Y, Li H, Wang Z, Han Y, Wu Z, Zhang X, Lai J, Wang L, Feng S. High-efficiency methanol oxidation electrocatalysts realized by ultrathin PtRuM-O (M = Ni, Fe, Co) nanosheets. Chem Commun (Camb) 2020; 56:9028-9031. [PMID: 32643724 DOI: 10.1039/d0cc00361a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general method for controlling the synthesis of a class of ultrathin PtRuM-O (M = Ni, Fe, Co) NSs is reported for the first time. By optimizing the metal ratio, the Pt7RuNi2-O NS catalyst is found to have the highest electrocatalytic activity (mass activity, 3.57 A mgPt-1) for the MOR among PtRuM-O NSs and PtRu-O NSs, which is 10.5 times higher than that of commercial Pt/C (0.34 A mgPt-1). And the Pt7RuNi2-O NSs also have better stability and CO anti-poisoning properties in the prepared materials. In addition, the ultrathin Pt7RuNi2-O NS catalyst also shows the highest performance among reported Pt-based catalysts for the MOR in acidic medium.
Collapse
Affiliation(s)
- Yue Pan
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Hongdong Li
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zuochao Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yi Han
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zhanchao Wu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xinyi Zhang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shouhua Feng
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
5
|
Kuyuldar E, Polat SS, Burhan H, Mustafov SD, Iyidogan A, Sen F. Monodisperse thiourea functionalized graphene oxide-based PtRu nanocatalysts for alcohol oxidation. Sci Rep 2020; 10:7811. [PMID: 32385358 PMCID: PMC7210875 DOI: 10.1038/s41598-020-64885-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022] Open
Abstract
Addressed herein, thiourea functionalized graphene oxide-based PtRu nanocatalysts (PtRu@T/GO) has been synthesized and characterized by several techniques and performed for methanol oxidation reactions as novel catalysts. In this study, graphene oxide (GO) was functionalized with thiourea (T/GO) in order to obtain monothiol functionalized graphene and increase the stability and activity of the nanocatalysts. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), TEM (transmission electron microscopy) and high-resolution transmission electron microscopy (HR-TEM) were used for characterization of the prepared nanocatalysts. The results obtained from these techniques showed that the prepared nanocatalysts were in a highly crystalline form, well dispersed on T/GO, very small in size and colloidally stable. The average size of the synthesized nanocatalysts determined by TEM analysis was found to be 3.86 ± 0.59 nm. With HR-TEM analysis, the atomic lattice fringes of the nanocatalysts were calculated to be 0.23 nm. After the full characterization of the prepared nanocatalysts, they were tried for the methanol oxidation reaction (MOR) and it was observed that 97.3% of the initial performance was maintained even after 1000 cycles while exhibiting great catalytic activity and stability with the help of T/GO. Thus, the arranged nanocatalysts displayed great heterogeneous catalyst characteristics for the methanol oxidation response.
Collapse
Affiliation(s)
- Esra Kuyuldar
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Su Selda Polat
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Hakan Burhan
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Sibel Demiroglu Mustafov
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Aysegul Iyidogan
- Department of Chemistry, Faculty of Science and Arts, Gaziantep University, Gaziantep, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
6
|
Ren G, Zhang Z, Liu Y, Liang Y, Zhang X, Wu S, Shen J. Facile Synthesis Of Composition-Controllable PtPdAuTe Nanowires As Superior Electrocatalysts For Direct Methanol Fuel Cells. Chem Asian J 2020; 15:98-105. [PMID: 31733030 DOI: 10.1002/asia.201901456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/10/2019] [Indexed: 11/09/2022]
Abstract
Multicomponent Pt-based nanowires (NWs) have attracted widespread attention as eletrocatalysts toward direct alcohol fuel cells because of their unique one-dimensional structure and high reaction dynamics. Quaternary PtPdAuTe NWs are designed via a facile template method, and NWs with a different composition are obtained by adjusting the feed ratio of metal precursors. The direct displacement reaction of metal precursors with Te NWs and the partial oxidation of Te lead to the formation of quaternary NWs. The rough surface and abundant reactive sites deriving from the rearrangement of metal atoms on the Te NWs surface endow the PtPdAuTe NWs with a superior electrocatalytic property and durability for methanol oxidation. The Pt20 Pd20 Au10 Te50 NWs display the largest mass activity and best stability among all catalysts. The preparation of PtPdAuTe NWs could provide a viable strategy for the preparation of other multicomponent NWs.
Collapse
Affiliation(s)
- Guohong Ren
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Zhicheng Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Yajun Liu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Ying Liang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Xichen Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Shishan Wu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Jian Shen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China.,Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road, Qixia District, Nanjing, 210046, China
| |
Collapse
|
7
|
Lv J, Feng W, Yang S, Liu H, Huang X. Methanol dissociation and oxidation on single Fe atom supported on graphitic carbon nitride. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junlan Lv
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| | - Wei Feng
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| | - Siwei Yang
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| | - Huiling Liu
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| | - Xuri Huang
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational ChemistryJilin University Changchun 130023 China
| |
Collapse
|
8
|
Zhang H, Ma L, Gan M, Xie F, He H, Hu L, Jiang M. Construction of a hollow porous carbon spheres@CoP/nitrogen-doped carbon supported platinum catalyst for high performance methanol oxidation. NEW J CHEM 2019. [DOI: 10.1039/c9nj02192b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A Pt–HPCS@CoP/NC catalyst with excellent catalytic activity, CO-tolerance and durability was synthesized for the methanol oxidation reaction.
Collapse
Affiliation(s)
- Huanhuan Zhang
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Li Ma
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Mengyu Gan
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Fei Xie
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Hongmei He
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Liangqing Hu
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Minghang Jiang
- College of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
9
|
Li F, Sun L, Luo Y, Li M, Xu Y, Hu G, Li X, Wang L. Effect of thiophene S on the enhanced ORR electrocatalytic performance of sulfur-doped graphene quantum dot/reduced graphene oxide nanocomposites. RSC Adv 2018; 8:19635-19641. [PMID: 35541017 PMCID: PMC9080651 DOI: 10.1039/c8ra02040j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/13/2018] [Indexed: 01/23/2023] Open
Abstract
In this study, a novel and simple hydrothermal method was developed to synthesize sulfur-doped graphene quantum dots (S-GQDs) with a diameter of 1-6 nm and S-GQD/reduced graphene oxide hybrids. The results indicated that an increase in the sulfur content led to superior ORR electrocatalytic activity. Moreover, it is found that thiophene S plays a significant role in the electrocatalytic activity. In addition, the average electron transfer number depends on the content of thiophene S. It is believed that the proposed synthesis strategy is a general and effective method for designing high-performance metal-free electrocatalytic materials.
Collapse
Affiliation(s)
- Fei Li
- College of Science, Guilin University of Technology Guilin 541004 P. R. China
| | - Lang Sun
- College of Science, Guilin University of Technology Guilin 541004 P. R. China
| | - Yi Luo
- College of Science, Guilin University of Technology Guilin 541004 P. R. China
| | - Ming Li
- College of Science, Guilin University of Technology Guilin 541004 P. R. China
| | - Yongjie Xu
- College of Science, Guilin University of Technology Guilin 541004 P. R. China
| | - Guanghui Hu
- College of Science, Guilin University of Technology Guilin 541004 P. R. China
| | - Xinyu Li
- College of Science, Guilin University of Technology Guilin 541004 P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 P. R. China
| |
Collapse
|
10
|
Li C, Eid K, Wang H, Deng Y, Lu S, Li X, Wang L, Gu H. One-pot synthesis of bimetallic PdCu nanoframes as an efficient catalyst for the methanol oxidation reaction. NEW J CHEM 2018. [DOI: 10.1039/c7nj04214k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A one-pot method is developed for the synthesis of PdCu nanoframes which are an active catalyst for the methanol oxidation reaction.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
- P. R. China
| | - Kamel Eid
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Hongjing Wang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Yaoyao Deng
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
- P. R. China
| | - Shuanglong Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
- P. R. China
| | - Xiaonian Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Liang Wang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|
11
|
Wang G, Jing S, Tan Y. Branched Pd@Rh core@shell nanocrystals with exposed Rh {100} facets: an effective electrocatalyst for hydrazine electro-oxidation. Sci Rep 2017; 7:16465. [PMID: 29184136 PMCID: PMC5705708 DOI: 10.1038/s41598-017-16776-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
Shape control of noble metal (NM) nanocrystals (NCs) is of great importance for improving their electrocatalytic performance. In this report, branched Pd@Rh core@shell NCs that have right square prism-like arms with preferential exposure of Rh {100} facets (denoted as b-Pd@Rh-NCs thereafter) are synthesized and utilized as an electrocatalyst for the hydrazine electrooxidation (HEO) in acidic and alkaline electrolytes. The b-Pd@Rh-NCs are obtained by the heteroepitaxial growth of Rh on the pre-formed branched Pd NCs (denoted as b-Pd-NCs thereafter) core in the presence of poly(vinyl pyrrolidone) (PVP) and bromide ions. A comparative analysis of the voltammetric data for the HEO shows a higher activity on the b-Pd@Rh-NCs exposed with Rh {100} faces than on Rh black, the b-Pd-NCs, and Pd black in acid and alkaline solutions, indicating a structure sensitivity of the reaction. Analysis of the products from the b-Pd@Rh-NCs catalysed HEO reveals a very high hydrazine fuel efficiency, as determined by on-line differential electrochemical mass spectrometry (DEMS).
Collapse
Affiliation(s)
- Guojing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Shengchang Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Yiwei Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|