1
|
Abotaleb A, Al-Masri D, Alkhateb A, Mroue K, Zekri A, Mashhour Y, Sinopoli A. Assessing the effect of acid and alkali treatment on a halloysite-based catalyst for dry reforming of methane. RSC Adv 2024; 14:4788-4803. [PMID: 38318606 PMCID: PMC10840390 DOI: 10.1039/d3ra07990b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Dry reforming of methane (DRM) has recently received wide attention owing to its outstanding performance in the reduction and conversion of CH4 and CO2 to syngas (H2 and CO). From an industrial perspective, nickel (Ni)-supported catalysts have been deemed among the most suitable catalysts for DRM owing to their low cost and high activity compared to noble metals. However, a downside of nickel catalysts is their high susceptibility to deactivation due to coke formation and sintering at high temperatures. Using appropriate supports and preparation methods plays a major role in improving the activity and stability of Ni-supported catalysts. Halloysite nanotubes (HNTs) are largely utilized in catalysis as a support for Ni owing to their abundance, low cost, and ease of preparation. The treatment of HNTs (chemical or physical) prior to doping with Ni is considered a suitable method for increasing the overall performance of the catalyst. In this study, the surface of HNTs was activated with acids (HNO3 and H2SO4) and alkalis (NaOH and Na2CO3 + NaNO3) prior to Ni doping to assess the effects of support treatment on the stability, activity, and longevity of the catalyst. Nickel catalysts on raw HNT, acid-treated HNT, and alkali-treated HNT supports were prepared via wet impregnation. A detailed characterization of the catalysts was conducted using X-ray diffraction (XRD), BET surface area analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), solid-state nuclear magnetic resonance (ssNMR), H2-temperature programmed reduction, (H2-TPR), CO2-temperature programmed desorption (CO2-TPD), and Ni-dispersion via H2-pulse chemisorption. Our results reveal a clear alteration in the structure of HNTs after treatment, while elemental mapping shows a uniform distribution of Ni throughout all the different supports. Moreover, the supports treated with a molten salt method resulted in the overall highest CO2 and CH4 conversion among the studied catalysts and exhibited high stability over 24 hours testing.
Collapse
Affiliation(s)
- Ahmed Abotaleb
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| | - Dema Al-Masri
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
- Earthna Center for a Sustainable Future, Qatar Foundation Doha Qatar
| | - Alaa Alkhateb
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| | - Kamal Mroue
- HBKU Core Labs, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| | - Atef Zekri
- HBKU Core Labs, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| | - Yasmin Mashhour
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University Doha P.O. Box 2713 Qatar
| | - Alessandro Sinopoli
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University P.O. Box 34110 Doha Qatar
| |
Collapse
|
2
|
Jaroenpanon K, Tiyatha W, Chukeaw T, Sringam S, Witoon T, Wattanakit C, Chareonpanich M, Faungnawakij K, Seubsai A. Synthesis of Na2WO4-MnxOy supported on SiO2 or La2O3 as fiber catalysts by electrospinning for oxidative coupling of methane. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
3
|
Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63789-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Wu X, Xu L, Chen M, Lv C, Wen X, Cui Y, Wu CE, Yang B, Miao Z, Hu X. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO 2 Reforming of Methane. Front Chem 2020; 8:581923. [PMID: 33195071 PMCID: PMC7543533 DOI: 10.3389/fchem.2020.581923] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
CO2 reforming of methane (CRM) can effectively convert two greenhouse gases (CO2 and CH4) into syngas (CO + H2). This process can achieve the efficient resource utilization of CO2 and CH4 and reduce greenhouse gases. Therefore, CRM has been considered as a significantly promising route to solve environmental problems caused by greenhouse effect. Ni-based catalysts have been widely investigated in CRM reactions due to their various advantages, such as high catalytic activity, low price, and abundant reserves. However, Ni-based catalysts usually suffer from rapid deactivation because of thermal sintering of metallic Ni active sites and surface coke deposition, which restricted the industrialization of Ni-based catalysts toward the CRM process. In order to address these challenges, scientists all around the world have devoted great efforts to investigating various influencing factors, such as the option of appropriate supports and promoters and the construction of strong metal-support interaction. Therefore, we carefully summarized recent development in the design and preparation of Ni-based catalysts with advanced catalytic activity and enhanced anti-coke performance toward CRM reactions in this review. Specifically, recent progresses of Ni-based catalysts with different supports, additives, preparation methods, and so on, have been summarized in detail. Furthermore, recent development of reaction mechanism studies over Ni-based catalysts was also covered by this review. Finally, it is prospected that the Ni-based catalyst supported by an ordered mesoporous framework and the combined reforming of methane will become the future development trend.
Collapse
Affiliation(s)
- Xianyun Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Leilei Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Chufei Lv
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xueying Wen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yan Cui
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Cai-E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Bo Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, China
| |
Collapse
|
5
|
le Saché E, Pastor-Pérez L, Garcilaso V, Watson D, Centeno M, Odriozola J, Reina T. Flexible syngas production using a La2Zr2-xNixO7-δ pyrochlore-double perovskite catalyst: Towards a direct route for gas phase CO2 recycling. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.05.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Wang F, Han K, Yu W, Zhao L, Wang Y, Wang X, Yu H, Shi W. Low Temperature CO 2 Reforming with Methane Reaction over CeO 2-Modified Ni@SiO 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35022-35034. [PMID: 32644767 DOI: 10.1021/acsami.0c09371] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing high performance catalysts for the low temperature CO2 reforming with methane (CRM) reaction is a challenge due to the occurrences of metal sintering and carbon deposition. In this study, we synthesized CeO2 modified Ni@SiO2 catalysts with excellent properties of sintering-resistance and low carbon deposition for high performance low temperature CRM. The Ni@SiO2-CeO2 catalysts displayed a size effect from tiny Ni nanoparticles to enhance CRM performance and a confinement effect from silica encapsulation to limit Ni sintering and exhibited oxygen storage capacity from ceria to reduce carbon deposition. Performance and characterization results revealed that the Ni@SiO2-CeO2-W catalyst with smaller ceria size exhibited higher performance and lower carbon deposition than the Ni@SiO2-CeO2-E catalyst with bigger ceria size, because the smaller ceria nanoparticles activated more CO2. This work provided a simple strategy to deposit small sized ceria on the Ni@SiO2 catalyst surface for the performance enhancement of low temperature CRM.
Collapse
Affiliation(s)
- Fagen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Kaihang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weishu Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Pauletto G, Vaccari A, Groppi G, Bricaud L, Benito P, Boffito DC, Lercher JA, Patience GS. FeCrAl as a Catalyst Support. Chem Rev 2020; 120:7516-7550. [DOI: 10.1021/acs.chemrev.0c00149] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gianluca Pauletto
- Chemical Engineering Department, École Polytechnique de Montréal, 2900 Boulevard Édourd-Montpetit, Montréal H3T 1J4, Canada
- Department of Chemistry, Technical University of Munich, 4 Lichtenbergstr, 85747 Garching, Germany
| | - Angelo Vaccari
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 41036 Bologna, Italy
| | - Gianpiero Groppi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
| | - Lauriane Bricaud
- Chemical Engineering Department, École Polytechnique de Montréal, 2900 Boulevard Édourd-Montpetit, Montréal H3T 1J4, Canada
- Ecole Nationale Superieure des Mines, 158 Cours Fauriel, 42023 St Etienne, France
| | - Patricia Benito
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 41036 Bologna, Italy
| | - Daria C. Boffito
- Chemical Engineering Department, École Polytechnique de Montréal, 2900 Boulevard Édourd-Montpetit, Montréal H3T 1J4, Canada
| | - Johannes A. Lercher
- Department of Chemistry, Technical University of Munich, 4 Lichtenbergstr, 85747 Garching, Germany
- Pacific Northwest National Laboratory, Institute for Integrated Catalysis, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Gregory S. Patience
- Chemical Engineering Department, École Polytechnique de Montréal, 2900 Boulevard Édourd-Montpetit, Montréal H3T 1J4, Canada
| |
Collapse
|
8
|
Song Y, Ozdemir E, Ramesh S, Adishev A, Subramanian S, Harale A, Albuali M, Fadhel BA, Jamal A, Moon D, Choi SH, Yavuz CT. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020; 367:777-781. [PMID: 32054760 DOI: 10.1126/science.aav2412] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
Abstract
Large-scale carbon fixation requires high-volume chemicals production from carbon dioxide. Dry reforming of methane could provide an economically feasible route if coke- and sintering-resistant catalysts were developed. Here, we report a molybdenum-doped nickel nanocatalyst that is stabilized at the edges of a single-crystalline magnesium oxide (MgO) support and show quantitative production of synthesis gas from dry reforming of methane. The catalyst runs more than 850 hours of continuous operation under 60 liters per unit mass of catalyst per hour reactive gas flow with no detectable coking. Synchrotron studies also show no sintering and reveal that during activation, 2.9 nanometers as synthesized crystallites move to combine into stable 17-nanometer grains at the edges of MgO crystals above the Tammann temperature. Our findings enable an industrially and economically viable path for carbon reclamation, and the "Nanocatalysts On Single Crystal Edges" technique could lead to stable catalyst designs for many challenging reactions.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Ercan Ozdemir
- Graduate School of EEWS, KAIST, Daejeon, 34141 Korea.,Institute of Nanotechnology, Gebze Technical University, Kocaeli, 41400 Turkey
| | | | | | | | - Aadesh Harale
- Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
| | - Mohammed Albuali
- Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia
| | - Bandar Abdullah Fadhel
- Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia.,Saudi-Aramco-KAIST CO2 Management Center, KAIST, Daejeon, 34141 Korea
| | - Aqil Jamal
- Research and Development Center, Saudi Aramco, Dhahran, 31311 Saudi Arabia.,Saudi-Aramco-KAIST CO2 Management Center, KAIST, Daejeon, 34141 Korea
| | - Dohyun Moon
- Pohang Accelerator Laboratory, Pohang, 37673 Korea
| | - Sun Hee Choi
- Pohang Accelerator Laboratory, Pohang, 37673 Korea
| | - Cafer T Yavuz
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea. .,Graduate School of EEWS, KAIST, Daejeon, 34141 Korea.,Saudi-Aramco-KAIST CO2 Management Center, KAIST, Daejeon, 34141 Korea.,Department of Chemistry, KAIST, Daejeon, 34141 Korea
| |
Collapse
|
9
|
Lu M, Zhang X, Deng J, Kuboon S, Faungnawakij K, Xiao S, Zhang D. Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00537a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts was demonstrated.
Collapse
Affiliation(s)
- Meirong Lu
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Xiaoyu Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Jiang Deng
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| | - Sanchai Kuboon
- National Nanotechnology Center
- National Science and Technology Development Agency
- 111 Thailand Science Park
- Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center
- National Science and Technology Development Agency
- 111 Thailand Science Park
- Thailand
| | - Shengxiong Xiao
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
- P.R. China
| | - Dengsong Zhang
- Department of Chemistry
- Research Center of Nano Science and Technology
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
10
|
Shen D, Huo M, Li L, Lyu S, Wang J, Wang X, Zhang Y, Li J. Effects of alumina morphology on dry reforming of methane over Ni/Al2O3 catalysts. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02093d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni-based catalysts supported on alumina with different morphologies exhibited different properties for the dry reforming of methane due to their specific lattice planes, 3D structures, and surface functional properties.
Collapse
Affiliation(s)
- Dongyang Shen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Miaomiao Huo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Lin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Shuai Lyu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Juhan Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Xiaoyan Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
11
|
Das S, Pérez-Ramírez J, Gong J, Dewangan N, Hidajat K, Gates BC, Kawi S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev 2020; 49:2937-3004. [DOI: 10.1039/c9cs00713j] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An in-depth assessment of properties of core–shell catalysts and their application in the thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2into synthesis gas and valuable hydrocarbons.
Collapse
Affiliation(s)
- Sonali Das
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Javier Pérez-Ramírez
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Institute of Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Collaborative Innovation Center for Chemical Science & Engineering
- Tianjin University
- Tianjin
| | - Nikita Dewangan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Kus Hidajat
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| | - Bruce C. Gates
- Department of Chemical Engineering
- University of California
- Davis
- USA
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
12
|
Peng H, Zhang X, Han X, You X, Lin S, Chen H, Liu W, Wang X, Zhang N, Wang Z, Wu P, Zhu H, Dai S. Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00968] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Honggen Peng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xianhua Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Xue Han
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Xiaojuan You
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Sixue Lin
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Hao Chen
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wenming Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Xiang Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Ning Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, Jiangxi 330031, China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal & Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| | - Huiyuan Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
13
|
Carbon-decorated-Pd (Pd@C) nanocatalysts structured on Al-fiber thin felt for dimethyl carbonate synthesis via carbonylation of methyl nitrite. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Li Z, Wang Z, Kawi S. Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming. ChemCatChem 2018. [DOI: 10.1002/cctc.201801266] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ziwei Li
- School of Chemical EngineeringGuizhou Institute of Technology 1 Caiguan Road Guiyang 550003 P.R. China
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhigang Wang
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585
| |
Collapse
|
15
|
Li Z, Jiang B, Wang Z, Kawi S. High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.07.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Conversion of biomass components to methyl levulinate over an ultra-high performance fiber catalyst in impellers of the agitation system. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Lu M, Fang J, Han L, Faungnawakij K, Li H, Cai S, Shi L, Jiang H, Zhang D. Coke-resistant defect-confined Ni-based nanosheet-like catalysts derived from halloysites for CO 2 reforming of methane. NANOSCALE 2018; 10:10528-10537. [PMID: 29799596 DOI: 10.1039/c8nr02006j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, halloysites, one of the most abundant clays, with hollow nanotube features were reconstructed by selectively etching silica from the outermost layer of the halloysites associated with unzipping the nanotubes to nanosheets via ball milling, and then, nickel nanoparticles were confined by the resulting defects in the nanosheets to boost charge transfer by a wet impregnation method. The obtained materials were developed as coke-resistant defect-confined Ni-based nanosheet-like catalysts for CO2 reforming of methane (CRM) for the first time. The as-prepared catalyst exhibited good coke and sintering resistance performance in CRM, and especially, there was almost no loss of activity even after a 20 h stability test due to the strong interaction between the Ni nanoparticles and the support. The present investigations may provide a new pathway for the design and application of highly coke-resistant CRM catalysts.
Collapse
Affiliation(s)
- Meirong Lu
- Department of Chemistry, Research Center of Nano Science and Technology, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | |
Collapse
|