1
|
Espinosa M, Leyva-Pérez A. Domino dehydration/intermolecular (enantioselective) ketone-ene reactions catalysed by a simple solid in batch and in flow. RSC Adv 2024; 14:32944-32957. [PMID: 39429935 PMCID: PMC11487643 DOI: 10.1039/d4ra06449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
The intermolecular carbonyl-ene reaction of ketones is still considered a challenge in organic chemistry, particularly with reusable solid catalysts, and implemented in a domino reaction. Herein, we show that the extremely cheap and non-toxic solid salt MgCl2 catalyzes the reaction of trifluoromethyl pyruvates not only during the conventional carbonyl-ene reaction with various aromatic and alkyl alkenes (in very high yields, up to >99%) but also in a domino reaction with the corresponding alcohols (precursors to the alkenes) in similar good yields. The solid can be reused in both cases without any erosion of the catalytic activity and can be employed in an in-flow process to maximize the reaction throughput. Besides, the reaction can be performed under solventless reaction conditions. Addition of a catalytic amount of chiral binaphthyl hydrogen phosphate allows carrying out the reaction with a reasonable enantiomeric excess (up to >70%) and in flow, in a rare example of enantioselective solid-catalyzed domino carbonyl-ene reaction using a cheap, simple, readily available and physically mixed catalytic solid. The MgCl2-catalytic system is also active in the industrially relevant citronellal-to-isopulegol carbonyl-ene reaction. These results pave the way to design sustainable domino carbonyl-ene reactions with extremely cheap solid catalysts.
Collapse
Affiliation(s)
- Miguel Espinosa
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
2
|
Ouyang L, Xia Y, Miao R, Liao J, Luo R. Iridium-catalyzed reductive etherification of α,β-unsaturated ketones and aldehydes with alcohols. Org Biomol Chem 2022; 20:2621-2625. [PMID: 35302576 DOI: 10.1039/d2ob00122e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An iridium complex-catalyzed reductive etherification of α,β-unsaturated ketones and aldehydes with primary alcohols is presented, affording allyl ethers in excellent yields. Deuterated and control experiments showed that this etherification transformation proceeded through a cascade transfer hydrogenation and alcohol condensation process. Moreover, the utility of this protocol is evidenced by the gram-scale performance.
Collapse
Affiliation(s)
- Lu Ouyang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Yanping Xia
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Rui Miao
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Jianhua Liao
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Renshi Luo
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
3
|
Li J, Huang C, Li C. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chia‐Yu Huang
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| | - Chao‐Jun Li
- Department of Chemistry FRQNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke St. W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
4
|
Li J, Li CJ, Huang CY. Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angew Chem Int Ed Engl 2021; 61:e202112770. [PMID: 34780098 DOI: 10.1002/anie.202112770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Conversion of carbonyl compounds, including aldehydes, ketones and carboxylic acids, into functionalized alkanes via deoxygenation would be highly desirable from a sustainability perspective and very enabling in chemical synthesis. This review covers the recent methodology development in carbonyl and carboxyl deoxygenative functionalizations, highlighting some typical and significant contributions in this field. These advances will be categorized based on types of bond formation, and in each part, selected examples will be discussed from their generalized mechanistic perspectives. Four summarized reactivity modes of aldehydes and ketones during the deoxygenation, namely, bis-electrophile, carbenoid, bis-nucleophile and alkyl radical, are presented, while the carboxylic acids are deoxygenated mainly via activated carbonyl or acetal intermediates.
Collapse
Affiliation(s)
| | - Chao-Jun Li
- McGill University, Chemistry, 801 Sherbrooke St. West, H3A0B8, Montreal, CANADA
| | | |
Collapse
|
5
|
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO 2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021; 14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Ether derivatives have myriad applications in several areas of chemical industry and academia. Hence, the development of more effective and sustainable protocols for their production is highly desired. Among the different methodologies reported for ether synthesis, catalytic reductive alcohol etherifications with carbonyl-based moieties (aldehydes/ketones and carboxylic acid derivatives) have emerged in the last years as a potential tool. These processes constitute appealing routes for the selective production of both symmetrical and asymmetrical ethers (including O-heterocycles) with an increased molecular complexity. Likewise, ester-to-ether catalytic reductions and hydrogenative alcohol etherifications with CO2 to dialkoxymethanes and other acetals, albeit in less extent, have undergone important advances, too. In this Review, an update of the recent progresses in the area of catalytic reductive alcohol etherifications using carbonyl-based compounds and CO2 have been described with a special focus on organic synthetic applications and catalyst design. Complementarily, recent progress made in catalytic acetal/ketal-to-ether or ester-to-ether reductions and other related transformations have been also summarized.
Collapse
Affiliation(s)
- Carles Lluna‐Galán
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Luis Izquierdo‐Aranda
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Rosa Adam
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Jose R. Cabrero‐Antonino
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
6
|
|
7
|
Rysak V, Dixit R, Trivelli X, Merle N, Agbossou-Niedercorn F, Vanka K, Michon C. Catalytic reductive deoxygenation of esters to ethers driven by hydrosilane activation through non-covalent interactions with a fluorinated borate salt. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00775g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorinated borate BArF salt catalyses the reductive deoxygenation of esters to ethers by using hydrosilanes. Experimental and theoretical studies highlight the role of noncovalent interactions in the reaction mechanism.
Collapse
Affiliation(s)
- Vincent Rysak
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | - Ruchi Dixit
- Physical and Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | | | - Nicolas Merle
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| | | | - Kumar Vanka
- Physical and Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Christophe Michon
- Univ. Lille
- CNRS
- Centrale Lille
- Univ. Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
| |
Collapse
|
8
|
Iridium-Catalyzed Silylation. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Wang X, Wang Z, Asanuma Y, Nishihara Y. Synthesis of 2-Substituted Propenes by Bidentate Phosphine-Assisted Methylenation of Acyl Fluorides and Acyl Chlorides with AlMe3. Org Lett 2019; 21:3640-3643. [DOI: 10.1021/acs.orglett.9b01059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiu Wang
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenhua Wang
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yuya Asanuma
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Zhou G, Aboo AH, Robertson CM, Liu R, Li Z, Luzyanin K, Berry NG, Chen W, Xiao J. N,O- vs N,C-Chelation in Half-Sandwich Iridium Complexes: A Dramatic Effect on Enantioselectivity in Asymmetric Transfer Hydrogenation of Ketones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gang Zhou
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Ahmed H. Aboo
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Craig M. Robertson
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Ruixia Liu
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Zhenhua Li
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Konstantin Luzyanin
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Weiping Chen
- School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| |
Collapse
|
11
|
Vivancos Á, Segarra C, Albrecht M. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. Chem Rev 2018; 118:9493-9586. [PMID: 30014699 DOI: 10.1021/acs.chemrev.8b00148] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mesoionic carbenes are a subclass of the family of N-heterocyclic carbenes that generally feature less heteroatom stabilization of the carbenic carbon and hence impart specific donor properties and reactivity schemes when coordinated to a transition metal. Therefore, mesoionic carbenes and their complexes have attracted considerable attention both from a fundamental point of view as well as for application in catalysis and beyond. As a follow-up of an earlier Chemical Reviews overview from 2009, the organometallic chemistry of N-heterocyclic carbenes with reduced heteroatom stabilization is compiled for the 2008-2017 period, including specifically the chemistry of complexes containing 1,2,3-triazolylidenes, 4-imidazolylidenes, and related 5-membered N-heterocyclic carbenes with reduced heteratom stabilization such as (is)oxazolylidenes, pyrrazolylidenes, and thiazolylidenes, as well as pyridylidenes as 6-membered N-heterocyclic carbenes with reduced heteroatom stabilization. For each ligand subclass, metalation strategies, electronic and steric properties, and applications, in particular, in metal-mediated catalysis, are compiled. Mesoionic carbenes demonstrate particularly high activity in (water) oxidation, hydrogen transfer reactions, and cyclization reactions. Unique features of these ligands are identified such as their dipolar structure, their specific donor properties, as well as stability aspects of the ligand and the complexes, which provides opportunities for further research.
Collapse
Affiliation(s)
- Ángela Vivancos
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland.,Departamento de Química Inorgánica , Universidad de Murcia , Apartado 4021 , 30071 Murcia , Spain
| | - Candela Segarra
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland.,Instituto de Tecnología Química , Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas , Avenida de los Naranjos s/n , 46022 Valencia , Spain
| | - Martin Albrecht
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland
| |
Collapse
|
12
|
Vivancos Á, Petronilho A, Cardoso J, Müller-Bunz H, Albrecht M. Unveiling the role of ancillary ligands in acceptorless benzyl alcohol dehydrogenation and etherification mediated by mesoionic carbene iridium complexes. Dalton Trans 2017; 47:74-82. [PMID: 29200225 DOI: 10.1039/c7dt04109h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized a set of triazolylidene iridium(iii) complexes [IrCp*(C^N)L]n+ (Cp* = pentamethylcyclopentadienyl, C^N = C,N-bidentate coordinating pyridyl-triazolylidene) containing different neutral or anionic ancillary ligands L and evaluated their impact on the catalytic activity in alcohol conversion. We demonstrate that these ancillary ligands have a strong influence on the catalytic selectivity and direct whether the iridium center preferentially catalyzes either the dehydrogenation or the dehydration of benzyl alcohol. Ligand exchange experiments provide a direct correlation of ligand lability with catalytic activity and selectivity. These results underline the relevance of ancillary ligands and provide a rational approach to tailor the catalytic activity of the iridium center towards aldehyde formation (loss of H2) or etherification (elimination of H2O).
Collapse
Affiliation(s)
- Ángela Vivancos
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|