1
|
Huang P, Chen T, Zheng Y, Yang C, Wang Y, Ran S, Zhi Y, Shan S, Jiang L. Aerobic epoxidation of α-pinene using Mn/SAPO-34 catalyst: Optimization via Response Surface Methodology (RSM). MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
A strategy combining the catalytic cracking of C6-C8 olefins and methanol to olefins (MTO) reaction through SAPO-34 pre-coking. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Liu Q, Ding J, Wang R, Zhong Q. FeZnK/SAPO-34 Catalyst for Efficient Conversion of CO2 to Light Olefins. Catal Letters 2022. [DOI: 10.1007/s10562-021-03863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Luo M, Hu B, Mao G, Wang B. Trace Compounds Confined in SAPO-34 and a Probable Evolution Route of Coke in the MTO Process. ACS OMEGA 2022; 7:3277-3283. [PMID: 35128239 PMCID: PMC8811923 DOI: 10.1021/acsomega.1c05336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Confined compounds in SAPO-34 cages are important to understand the activation and deactivation mechanisms of the methanol-to-olefin process. In this work, gas chromatography-mass spectrometry (GC-MS) chromatograms of CCl4-extracted samples of used SAPO-34 were denoised by subtracting signals of air compounds and stationary phase bleeding of the chromatographic column, which enhanced the identification of trace compounds. In addition to the generally noted methyl aromatics, this work also identified alkanes, cycloalkanes, alkyl (ethyl, propyl, and butyl) compounds, partially saturated compounds, and bridged compounds. These novel identified trace compounds favor the evolution route depiction of monocyclic, bicyclic, tricyclic, tetracyclic, and multicore hydrocarbons in the SAPO-34 cage. Confined compounds should grow via step-by-step alkylation, cyclization, and aromatization processes. C2+ side chains, especially C3+, favor the growth of rings. Alkyldihydroindenes should be key intermediates between monocyclic and bicyclic aromatics. Bridged soluble compounds provide evidence that insoluble coke is formed across cages in the SAPO-34 crystal.
Collapse
|
5
|
Kokuryo S, Tamura K, Miyake K, Uchida Y, Mizusawa A, Kubo T, Nishiyama N. Zr-doped SAPO-34 with enhanced Lewis acidity. NEW J CHEM 2022. [DOI: 10.1039/d1nj06087b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zr-doped SAPO-34 has enhanced Lewis acidity, leading to high catalytic activity for LDPE cracking.
Collapse
Affiliation(s)
- Shinya Kokuryo
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuya Tamura
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Koji Miyake
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Atsushi Mizusawa
- AC Biode Co., Ltd. 498-6 Iwakura Hanazono, Sakyo, Kyoto, 606-0024, Japan
| | - Tadashi Kubo
- AC Biode Co., Ltd. 498-6 Iwakura Hanazono, Sakyo, Kyoto, 606-0024, Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
6
|
Minova IB, Bühl M, Matam SK, Catlow CRA, Frogley MD, Cinque G, Wright PA, Howe RF. Carbene-like reactivity of methoxy groups in a single crystal SAPO-34 MTO catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02361f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In situ synchrotron infrared microspectroscopy on single crystals of SAPO-34 reveals that a carbene insertion mechanism is responsible for the first carbon–carbon bond formation from surface methoxy groups.
Collapse
Affiliation(s)
- Ivalina B. Minova
- EastCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK
| | - Michael Bühl
- EastCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK
| | - Santhosh K. Matam
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - C. Richard A. Catlow
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Mark D. Frogley
- MIRIAM beamline B22, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Gianfelice Cinque
- MIRIAM beamline B22, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Paul A. Wright
- EastCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK
| | | |
Collapse
|
7
|
Solvent-Free Synthesis of SAPO-34 Zeolite with Tunable SiO2/Al2O3 Ratios for Efficient Catalytic Cracking of 1-Butene. Catalysts 2021. [DOI: 10.3390/catal11070835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Solvent-free synthesis methodology is a promising technique for the green and sustainable preparation of zeolites materials. In this work, a solvent-free route was developed to synthesize SAPO-34 zeolite. The characterization results indicated that the crystal size, texture properties, acidity and Si coordination environment of the resulting SAPO-34 were tuned by adjusting the SiO2/Al2O3 molar ratio in the starting mixture. Moreover, the acidity of SAPO-34 zeolite was found to depend on the Si coordination environment, which was consistent with that of SAPO-34 zeolite synthesized by the hydrothermal method. At an SiO2/Al2O3 ratio of 0.6, the SP-0.6 sample exhibited the highest conversion of 1-butene (82.8%) and a satisfactory yield of light olefins (51.6%) in the catalytic cracking of 1-butene, which was attributed to the synergistic effect of the large SBET (425 m2/g) and the abundant acid sites (1.82 mmol/g). This work provides a new opportunity for the design of efficient zeolite catalysts for industrially important reactions.
Collapse
|
8
|
Valecillos J, Ruiz-Martinez J, Aguayo AT, Castaño P. Combined Ex and In Situ Measurements Elucidate the Dynamics of Retained Species in ZSM-5 and SAPO-18 Catalysts Used in the Methanol-to-Olefins Reaction. Chemistry 2021; 27:6719-6731. [PMID: 33347673 DOI: 10.1002/chem.202004865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/07/2022]
Abstract
The dynamics of the retained species on ZSM-5 and SAPO-18 catalysts are studied by using a combination of temperature-programmed desorption/oxidation, ex situ analysis, and in situ FTIR spectroscopic measurements over the entire conversion range, using fixed-bed and spectroscopic cell reactors, in continuous and discontinuous mode. The results point to the appropriateness of the combined methodologies to track the interconversion of active into deactivating species. A statistically relevant (supported by linear regression and multivariate analysis) association of the observations is found by using the different complementary methodologies. The kinetics of this interconversion depends on the initial conversion (tuned by acidity and space time) and microporous topology, and involve: (i) in the ZSM-5 catalysts, the diffusion of monocyclic aromatics toward the exterior of the zeolite to form coke, and (ii) in the SAPO-18 catalysts, the obstruction of the cavities by aromatics that grow into tetracyclic aromatic islands.
Collapse
Affiliation(s)
- José Valecillos
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Javier Ruiz-Martinez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), P.O. Box 4700, Thuwal, 23955-6900, Saudi Arabia
| | - Andrés T Aguayo
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Pedro Castaño
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), P.O. Box 4700, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions. J Catal 2021. [DOI: 10.1016/j.jcat.2020.08.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Yao J, Tian H, Zha F, Ma S, Tang X, Chang Y, Guo X. Regulating the size and acidity of SAPO-34 zeolites using dual templates to enhance the selectivity of light olefins in MTO. NEW J CHEM 2021. [DOI: 10.1039/d1nj01845k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To understand the relationship between the catalytic performance, crystallite size, and acidity of SAPO-34 zeolites, a series of SAPO-34 zeolites were prepared by hydrothermal crystallization using palygorskite and dual templates.
Collapse
Affiliation(s)
- Jihui Yao
- College of Chemitxstry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Haifeng Tian
- College of Chemitxstry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Fei Zha
- College of Chemitxstry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Shizi Ma
- College of Chemitxstry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xiaohua Tang
- College of Chemitxstry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Yue Chang
- College of Chemitxstry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
| | - Xiaojun Guo
- College of Chemitxstry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
11
|
Xu J, Yu J, Xu J, Sun C, He W, Huang J, Li G. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140235. [PMID: 32629243 DOI: 10.1016/j.scitotenv.2020.140235] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 05/28/2023]
Abstract
Recently, the recycling of waste tires has caused widespread concern for its environmental issues. The experience of the producer responsibility and tax system is of great beneficial to developing countries. The article also elaborates on the efforts of Chinese government to focus on establishing and perfecting waste tire treatment system by strengthen legislation. The main reasons such as immature market, non-uniform policy and repeated taxation for the survival difficulties of waste tire recycling enterprises in China are summarized. Among numerous resource methods, pyrolysis has been considered as a promising thermochemical process to deal with the waste tires. Unlike other similar reviews that mainly focus on its liquid phase, special attention has been given to solid char, pyrolysis carbon black, due to its wide application and high-value utilization in the future. We summarize the available research on application of pyrolysis carbon black as an alternative to commercial carbon black in rubber manufacture, as activated carbon in pollution control and as biochar for soil improvement. Analysis of the available data revealed that 1) the influence of temperature and time has been basically established; 2) catalyst type, dosage and reactor selection should be adjusted according to product demand; 3) pickling has become the primary means of improving pyrolysis carbon black; 4) the type of modifier and modification method must be adjusted according to the specific characteristics of the raw materials and needs to be combined with the experimental results to realize resource utilization and give full play to its economic value.
Collapse
Affiliation(s)
- Junqing Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiaxue Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianglin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chenliang Sun
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenzhi He
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Juwen Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Guangming Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
12
|
Xu Z, Ma H, Huang Y, Qian W, Zhang H, Ying W. Synthesis of Submicron SSZ-13 with Tunable Acidity by the Seed-Assisted Method and Its Performance and Coking Behavior in the MTO Reaction. ACS OMEGA 2020; 5:24574-24583. [PMID: 33015475 PMCID: PMC7528296 DOI: 10.1021/acsomega.0c03075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Submicron SSZ-13 with different acidities was synthesized successfully with the assistance of nanosized SSZ-13 seeds. The methanol-to-olefins (MTO) properties of submicron SSZ-13 were evaluated. The lifetime of submicron SSZ-13 was enhanced because of the crystal size reduction. The selectivity of light olefins was improved evidently at the early stage of the MTO reaction as the acidity density decreased. TG, GC-MS, and in situ UV/vis spectra were utilized to investigate coking behavior during the MTO reaction. It was found that the acidity density influences the nature and rate of coke formation. The majority of the hydrocarbon pool species over SSZ-13 with a low acidity density (125.2 μmol/g) were methylated benzene carbocations, while that over SSZ-13 with a high acidity density (330.2 μmol/g) were methylated naphthalene carbocations. The low acidity density of SSZ-13 can suppress the hydrogen transfer reaction and polyaromatic generation.
Collapse
|
13
|
Luo M, Liu M, Fu Y, Chen W, Wang B, Mao G. TEAOH‐Templated SAPO‐34 Zeolite with Different Crystallization Processes and Silicon Sources: Crystallization Mechanism and MTO Performance. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingjian Luo
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Mingxu Liu
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Yadong Fu
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Wenxin Chen
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Baohui Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| | - Guoliang Mao
- Provincial Key Laboratory of Oil & Gas Chemical Technology College of Chemistry & Chemical Engineering Northeast Petroleum University Daqing 163318 Heilongjiang P.R. China
| |
Collapse
|
14
|
Rieck genannt Best F, Mundstock A, Dräger G, Rusch P, Bigall NC, Richter H, Caro J. Methanol-to-Olefins in a Membrane Reactor with in situ Steam Removal - The Decisive Role of Coking. ChemCatChem 2020; 12:273-280. [PMID: 32064007 PMCID: PMC7006748 DOI: 10.1002/cctc.201901222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/16/2019] [Indexed: 11/11/2022]
Abstract
The reaction of methanol to light olefins and water (MTO) was studied in a fixed bed tubular membrane reactor using commercial SAPO-34 catalyst. In the fixed bed reactor without membrane support, the MTO reaction collapsed after 3 h time on stream. However, if the reaction by-product steam is in situ extracted from the reactor through a hydrophilic tubular LTA membrane, the reactor produces long-term stable about 60 % ethene and 10 % propene. It is shown that the reason for the superior performance of the membrane-assisted reactor is not the prevention of catalyst damage caused by steam but the influence of the water removal on the formation of different carbonaceous residues inside the SAPO-34 cages. Catalytically beneficial methylated 1 or 2 ring aromatics have been found in a higher percentage in the MTO reaction with a water removal membrane compared to the MTO reaction without membrane support.
Collapse
Affiliation(s)
- Felix Rieck genannt Best
- Institute for Physical Chemistry and ElectrochemistryLeibniz University HannoverCallinstraße 3 AHannover30167Germany
| | - Alexander Mundstock
- Institute for Physical Chemistry and ElectrochemistryLeibniz University HannoverCallinstraße 3 AHannover30167Germany
| | - Gerald Dräger
- Institute for Organic ChemistryLeibniz University HannoverSchneiderberg 1BHannover30167Germany
| | - Pascal Rusch
- Institute for Physical Chemistry and ElectrochemistryLeibniz University HannoverCallinstraße 3 AHannover30167Germany
| | - Nadja C. Bigall
- Institute for Physical Chemistry and ElectrochemistryLeibniz University HannoverCallinstraße 3 AHannover30167Germany
| | - Hannes Richter
- Institute for Ceramic Technologies and SystemsFraunhofer IKTSMichael-Faraday-Straße 1Hermsdorf07629Germany
| | - Jürgen Caro
- Institute for Physical Chemistry and ElectrochemistryLeibniz University HannoverCallinstraße 3 AHannover30167Germany
| |
Collapse
|
15
|
Propene Adsorption-Chemisorption Behaviors on H-SAPO-34 Zeolite Catalysts at Different Temperatures. Catalysts 2019. [DOI: 10.3390/catal9110919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Propene is an important synthetic industrial product predominantly formed by a methanol-to-olefins (MTO) catalytic process. Propene is known to form oligomers on zeolite catalysts, and paramters to separate it from mixtures and its diffusion properties are difficult to measure. Herein, we explored the adsorption–chemisorption behavior of propene by choosing SAPO-34 zeolites with three different degrees of acidity at various adsorption temperatures in an ultra-high-vacuum adsorption system. H-SAPO-34 zeolites were prepared by a hydrothermal method, and their structural, morphological, and acidic properties were investigated by XRD, SEM, EDX, and temperature-programmed desorption of ammonia (NH3-TPD) analysis techniques. The XRD analysis revealed the highly crystalline structure which posses cubic morphology as confirmed by SEM images. The analysis of adsorption of propene on SAPO-34 revealed that a chemical reaction (chemisorption) was observed between zeolite and propene at room temperature (RT) when the concentration of acidic sites was high (0.158 mmol/g). The reaction was negligible when the concentration of the acidic sites was low (0.1 mmol/g) at RT. However, the propene showed no reactivity with the highly acidic SAPO-34 at low temperatures, i.e., −56 °C (using octane + dry ice), −20 °C (using NaCl + ice), and 0 °C (using ice + water). In general, low-temperature conditions were found to be helpful in inhibiting the chemisorption of propene on the highly acidic H-SAPO-34 catalysts, which can facilitate propene separation and allow for reliable monitoring of kinetic parameters.
Collapse
|
16
|
Zhou J, Zhi Y, Zhang J, Liu Z, Zhang T, He Y, Zheng A, Ye M, Wei Y, Liu Z. Presituated “coke”-determined mechanistic route for ethene formation in the methanol-to-olefins process on SAPO-34 catalyst. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Bakhtiar SUH, Ali S, Wang X, Yuan F, Li Z, Zhu Y. Synthesis of sub-micrometric SAPO-34 by a morpholine assisted two-step hydrothermal route and its excellent MTO catalytic performance. Dalton Trans 2019; 48:2606-2616. [PMID: 30706909 DOI: 10.1039/c8dt04559c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SAPO-34 with a sub-micrometer crystal size was synthesized by a double hydrothermal treatment employing cost-effective morpholine as a structure directing agent, which presented an enhanced catalytic lifetime (nearly 3 times the conventional one) in the reaction of methanol to olefins with a higher light olefin selectivity (total selectivity of 97.1%). Detailed studies of the sample after different time intervals in the second crystallization with and without additional morpholine were carried out, which offered insight into crystal degradation and re-crystallization phenomena. The samples with different morpholine concentrations during the second hydrothermal treatment were also prepared, in which the sample with 80% MOR aqueous solution exhibited the smallest crystal size and the longest MTO lifetime. Furthermore, the investigation on the additional amount of mother liquor (from the first crystallization) required for the second crystallization showed that the presence of half the amount of the mother liquor (nutrients) could give us the required results effectively.
Collapse
Affiliation(s)
- Syed Ul Hasnain Bakhtiar
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang J, Xu L, Zhang Y, Huang Z, Zhang X, Zhang X, Yuan Y, Xu L. Hydrogen transfer versus olefins methylation: On the formation trend of propene in the methanol-to-hydrocarbons reaction over Beta zeolites. J Catal 2018. [DOI: 10.1016/j.jcat.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|