1
|
Azhari NJ, Nurdini N, Mardiana S, Ilmi T, Fajar AT, Makertihartha I, Subagjo, Kadja GT. Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Yang Y, Sun H, Zhao X, Xian D, Han X, Wang B, Wang S, Zhang M, Zhang C, Ye X, Ni Y, Tong Y, Tang Q, Liu Y. High-Mobility Fungus-Triggered Biodegradable Ultraflexible Organic Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105125. [PMID: 35257518 PMCID: PMC9069197 DOI: 10.1002/advs.202105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/04/2022] [Indexed: 05/31/2023]
Abstract
Biodegradable organic field-effect transistors (OFETs) have drawn tremendous attention for potential applications such as green electronic skins, degradable flexible displays, and novel implantable devices. However, it remains a huge challenge to simultaneously achieve high mobility, stable operation and controllable biodegradation of OFETs, because most of the widely used biodegradable insulating materials contain large amounts of hydrophilic groups. Herein, it is firstly proposed fungal-degradation ultraflexible OFETs based on the crosslinked dextran (C-dextran) as dielectric layer. The crosslinking strategy effectively eliminates polar hydrophilic groups and improves water and solvent resistance of dextran dielectric layer. The device with spin-coated 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor and C-dextran dielectric exhibits the highest mobility up to 7.72 cm2 V-1 s-1 , which is higher than all the reported degradable OFETs. Additionally, the device still maintains high performance regardless of in an environment humidity up to 80% or under the extreme bending radius of 0.0125 mm. After completion of their mission, the device can be controllably biodegraded by fungi without any adverse environmental effects, promoting the natural ecological cycles with the concepts of "From nature, for nature". This work opens up a new avenue for realizing high-performance biodegradable OFETs, and advances the process of the "green" electrical devices in practical applications.
Collapse
Affiliation(s)
- Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Hongying Sun
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Da Xian
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xu Han
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Bin Wang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Shuya Wang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Cong Zhang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xiaolin Ye
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Researchand Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| |
Collapse
|
3
|
Tierney GF, Alijani S, Panchal M, Decarolis D, Gutierrez MB, Mohammed KMH, Callison J, Gibson EK, Thompson PBJ, Collier P, Dimitratos N, Corbos EC, Pelletier F, Villa A, Wells PP. Controlling the Production of Acid Catalyzed Products of Furfural Hydrogenation by Pd/TiO
2. ChemCatChem 2021. [DOI: 10.1002/cctc.202101036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- George F. Tierney
- School of Chemistry University of Southampton Southampton SO17 1BJ UK
- UK Catalysis Hub Research Complex at Harwell Rutherford Appleton Laboratory Harwell, Didcot OX11 0FA UK
| | - Shahram Alijani
- Dipartimento di Chimica Universitá degli Studi di Milano 20133 Milano Italy
| | - Monik Panchal
- UK Catalysis Hub Research Complex at Harwell Rutherford Appleton Laboratory Harwell, Didcot OX11 0FA UK
- Department of Chemistry University College London London WC1H OAJ UK
| | - Donato Decarolis
- UK Catalysis Hub Research Complex at Harwell Rutherford Appleton Laboratory Harwell, Didcot OX11 0FA UK
- Cardiff Catalysis Institute School of Chemistry Cardiff University Cardiff CF10 3AT UK
| | | | | | - June Callison
- UK Catalysis Hub Research Complex at Harwell Rutherford Appleton Laboratory Harwell, Didcot OX11 0FA UK
- Cardiff Catalysis Institute School of Chemistry Cardiff University Cardiff CF10 3AT UK
| | - Emma K. Gibson
- School of Chemistry University of Glasgow Glasgow G12 8QQ UK
| | - Paul B. J. Thompson
- BM28/XMaS UK CRG ESRF 38043 Grenoble France
- Oliver Lodge Laboratory Department of Physics University of Liverpool Liverpool L69 7ZE UK
| | - Paul Collier
- Johnson Matthey Technology Centre Sonning Common, Reading RG4 9NH UK
| | - Nikolaos Dimitratos
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater Studiorum Universitá di Bologna 40136 Bologna Italy
| | - E. Crina Corbos
- Johnson Matthey Technology Centre Sonning Common, Reading RG4 9NH UK
| | | | - Alberto Villa
- Dipartimento di Chimica Universitá degli Studi di Milano 20133 Milano Italy
| | - Peter P. Wells
- School of Chemistry University of Southampton Southampton SO17 1BJ UK
- UK Catalysis Hub Research Complex at Harwell Rutherford Appleton Laboratory Harwell, Didcot OX11 0FA UK
- Diamond Light Source Harwell Science and Innovation Campus Chilton, Didcot OX11 0DE UK
| |
Collapse
|
4
|
Gigl M, Frank O, Barz J, Gabler A, Hegmanns C, Hofmann T. Identification and Quantitation of Reaction Products from Quinic Acid, Quinic Acid Lactone, and Chlorogenic Acid with Strecker Aldehydes in Roasted Coffee. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1027-1038. [PMID: 33433215 DOI: 10.1021/acs.jafc.0c06887] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To gain comprehensive insight into the interactions of key coffee odorants, like the Strecker aldehydes, acetaldehyde, propanal, methylpropanal, 2- and 3-methylbutanal, and methional, and the nonvolatile fraction of coffee, an untargeted metabolomics approach was applied. Ultra performance liquid chromatography (UPLC)-time of flight (TOF)-mass spectrometry (ESI-) profiling followed by statistical data analysis revealed a marker substance for a coffee beverage spiked with acetaldehyde with an accurate mass of 217.0703 [M - H]-. This compound could be identified as a reaction product of quinic acid (QA) and acetaldehyde linked by acetalization at the cis-diol function of QA. Consequently, the acetalization of aldehydes, QA, 5-O-caffeoyl quinic acid (CQA), and quinic acid γ-lactone (QAL) was investigated by means of model reactions, followed by synthesis, isolation, and structure elucidation via UPLC-TOF-MS and 1D and 2D NMR techniques. UHPLC-MS/MSMRM screening and the quantification of aldehyde adducts in coffee beverages revealed the presence of QA/acetaldehyde, -/propanal, -/methylpropanal, and -/methional reaction products and CQA/acetaldehyde, -/propanal, -/methylpropanal, -/2- and 3-methylbutanal, and -/methional and QAL/acetaldehyde adducts for the first time, in concentrations of 12-270 μg/L for QA/aldehydes, 5-225 μg/L for CQA/aldehydes, and 62-173 μg/L for QAL/acetaldehyde. The sensory characterization of the identified compounds showed bitter taste recognition thresholds of 48-297 μmol/L for CQA adducts and 658 μmol/L for QAL/acetaldehyde, while the QA adducts showed no bitter taste (<2000 μmol/L).
Collapse
Affiliation(s)
- Michael Gigl
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Oliver Frank
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Johanna Barz
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Anna Gabler
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Christian Hegmanns
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular and Sensory Science, Technische Universität München, Lise-Meitner-Str. 34, D-85354 Freising, Germany
| |
Collapse
|
5
|
Papanikolaou G, Lanzafame P, Perathoner S, Centi G, Cozza D, Giorgianni G, Migliori M, Giordano G. High performance of Au/ZTC based catalysts for the selective oxidation of bio-derivative furfural to 2-furoic acid. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
6
|
Allen MC, Hoffman AJ, Liu TW, Webber MS, Hibbitts D, Schwartz TJ. Highly Selective Cross-Etherification of 5-Hydroxymethylfurfural with Ethanol. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meredith C. Allen
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine 04469, United States
- Forest Bioproducts Research Institute, University of Maine, Orono, Maine 04469, United States
| | - Alexander J. Hoffman
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32612, United States
| | - Tsung-wei Liu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32612, United States
| | - Matthew S. Webber
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine 04469, United States
| | - David Hibbitts
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32612, United States
| | - Thomas J. Schwartz
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine 04469, United States
- Forest Bioproducts Research Institute, University of Maine, Orono, Maine 04469, United States
- Frontier Institute for Research in Sensor Technology, University of Maine, Orono, Maine 04469, United States
| |
Collapse
|
7
|
Comboni D, Pagliaro F, Lotti P, Gatta GD, Merlini M, Milani S, Migliori M, Giordano G, Catizzone E, Collings IE, Hanfland M. The elastic behavior of zeolitic frameworks: The case of MFI type zeolite under high-pressure methanol intrusion. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Highly selective bifunctional Ni zeo-type catalysts for hydroprocessing of methyl palmitate to green diesel. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Chen B, Yan G, Chen G, Feng Y, Zeng X, Sun Y, Tang X, Lei T, Lin L. Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s42500-020-00012-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractBiomass-derived 5-ethoxymethylfurfural (EMF) with excellent energy density and satisfactory combustion performance holds great promise to meet the growing demands for transportation fuels and fuel additives to a certain extent. In this review, we summarized the relative merits of the EMF preparation from different feedstocks, such as platform chemicals, biomass sugars and lignocellulosic biomass. Advances for EMF synthesis over homogeneous (i.e. inorganic acids and soluble metal salts), heterogeneous catalysts (i.e. zeolites, heteropolyacid-based hybrids, sulfonic acid-functionalized catalysts, and others) or mixed-acid catalysts were performed as well. Additionally, the emerging development for the EMF production was also evaluated in terms of the different solvents system (i.e. single-phase solvents, biphasic solvents, ionic liquids, and deep eutectic solvents). It is concluded with current challenges and prospects for advanced biofuel EMF preparation in the future.
Collapse
|
10
|
Nagao M, Misu S, Hirayama J, Otomo R, Kamiya Y. Magneli-Phase Titanium Suboxide Nanocrystals as Highly Active Catalysts for Selective Acetalization of Furfural. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2539-2547. [PMID: 31868342 DOI: 10.1021/acsami.9b19520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alongside TiO2, Magneli-phase titanium suboxide having the composition of TinO2n-1 is a kind of attractive functional materials composed of titanium. However, there still remain problems to be overcome in the synthesis of titanium suboxide; the existing synthesis methods require high temperature typically over 1000 °C and/or postsynthesis purification. This study presents a novel approach to synthesis of titanium suboxide nanoparticles through solid-phase reaction of TiO2 with TiH2. Crystal phases of titanium suboxide were easily controlled by changing TiO2/TiH2 molar ratios in a TiO2-TiH2 mixed precursor, and a series of titanium suboxide nanoparticles including Ti2O3, Ti3O5, Ti4O7, and Ti8O15 were successfully obtained. The reaction of TiO2 with TiH2 proceeded at a relatively low temperature due to the high reactivity of TiH2, giving titanium suboxide nanoparticles without any postsynthesis purification. Ti2O3 nanoparticles and TiO2 were applied as solid acid catalysts for reaction of furfural with 2-propanol. Ti2O3 showed a high catalytic activity and high selectivity for acetalization of furfural, while TiO2 showed only poor activity for transfer hydrogenation of furfural. The difference in catalytic properties is discussed in terms of the acid properties of Ti2O3 and TiO2.
Collapse
|
11
|
Zaccheria F, Bossola F, Scotti N, Evangelisti C, Dal Santo V, Ravasio N. On demand production of ethers or alcohols from furfural and HMF by selecting the composition of a Zr/Si catalyst. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01427c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Silica is used to tailor the acid–base properties of ZrO2 to selectively transform furfural and HMF into alcohols or ethers.
Collapse
Affiliation(s)
- Federica Zaccheria
- CNR
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
- 20133 Milano
- Italy
| | - Filippo Bossola
- CNR
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
- 20133 Milano
- Italy
| | - Nicola Scotti
- CNR
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
- 20133 Milano
- Italy
| | | | - Vladimiro Dal Santo
- CNR
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
- 20133 Milano
- Italy
| | - Nicoletta Ravasio
- CNR
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
- 20133 Milano
- Italy
| |
Collapse
|
12
|
Kumari PK, Rao BS, Dhana Lakshmi D, Sai Paramesh NR, Sumana C, Lingaiah N. Tungstophosphoric acid supported on mesoporouus niobiumoxophosphate: an efficient solid acid catalyst for etherification of 5-hydroxymethylfurfural to 5-ethoxymethylfurfural. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|