1
|
Guo D, Jiang K, Gan H, Ren Y, Long J, Li Y, Yin B. Template-Oriented Polyaniline-Supported Palladium Nanoclusters for Reductive Homocoupling of Furfural Derivatives. Angew Chem Int Ed Engl 2023; 62:e202304662. [PMID: 37477076 DOI: 10.1002/anie.202304662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Developing well-defined structures and desired properties for porous organic polymer (POP) supported catalysts by controlling their composition, size, and morphology is of great significance. Herein, we report a preparation of polyaniline (PANI) supported Pd nanoparticles (NPs) with controllable structure and morphology. The protocol involves the introduction of MnO2 with different crystal structures (α, β, γ, δ, ϵ) serving as both the reaction template and the oxidant. The different forms of MnO2 each convert aniline to a PANI that contains a unique regular distribution of benzene and quinone. This leads to the Pd/PANI catalysts with different charge transfer properties between Pd and PANI, as well as different dispersions of the metal NPs. In this case, the Pd/ϵ-PANI catalyst greatly improves the turnover frequency (TOF; to 88.3 h-1 ), in the reductive coupling of furfural derivatives to potential bio-based plasticizers. Systematic characterizations reveal the unique oxidation state of the support in the Pd/ϵ-PANI catalyst and coordination mode of Pd that drives the formation of highly dispersed Pd nanoclusters. Density functional theory (DFT) calculations show the more electron rich Pd/PANI catalyst has the lower energy barrier in the oxidative addition step, which favors the C-C coupling reaction.
Collapse
Affiliation(s)
- Dongwen Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hui Gan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yanwei Ren
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jinxing Long
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Baran NY, Baran T, Nasrollahzadeh M. Synthesis of palladium nanoparticles stabilized on Schiff base-modified ZnO particles as a nanoscale catalyst for the phosphine-free Heck coupling reaction and 4-nitrophenol reduction. Sci Rep 2023; 13:12008. [PMID: 37491465 PMCID: PMC10368721 DOI: 10.1038/s41598-023-38898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
Recently, the development of heterogeneous nanocatalytic systems using solid supports has been gaining importance due to some advantages such as easy handling, high thermal stability, high efficiency, reusability, and so on. Therefore, the design of catalyst supports for the preparation of stable heterogeneous catalytic systems is of great importance. In this work, Schiff base-modified ZnO particles have been developed (ZnO-Scb) as a novel support. A heterogeneous nanocatalyst system has then been prepared by immobilizing palladium nanoparticles (Pd NPs) on the ZnO-Scb surface as the support. The resulting palladium nanocatalyst (Pd-ZnO-Scb) structure has been characterized by different analytical techniques (FT-IR, XRD, TEM, FE-SEM, elemental mapping and EDS) and used to catalyze the Heck coupling reactions and 4-nitrophenol (4-NP) reduction. Test results revealed that Pd-ZnO-Scb could effectively couple various aryl halides with styrene in yields of up to 98% in short reaction times. Pd-ZnO-Scb was also efficiently used in the complete 4-NP reduction within 135 s at room temperature. Additionally, it was found that Pd-ZnO-Scb was more effective than other reported catalysts in the Heck coupling reaction. Moreover, the recycling tests indicated that Pd-ZnO-Scb could be easily isolated from the reaction medium and reused in seven consecutive catalytic runs while retaining its nanostructure.
Collapse
Affiliation(s)
- Nuray Yılmaz Baran
- Department of Chemistry Technology, Technical Vocational School, Aksaray University, 68100, Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, PO Box 37185‑359, Iran.
| |
Collapse
|
3
|
Shirvandi Z, Ghorbani-Choghamarani A, Rostami A. A palladium(0)-threonine complex immobilized on the surface of magnetic mesocellular foam: an efficient, stable, and magnetically separable nanocatalyst for Suzuki, Stille, and Heck cross-coupling reactions. RSC Adv 2023; 13:17449-17464. [PMID: 37313518 PMCID: PMC10258685 DOI: 10.1039/d3ra02721j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
In this study, a new palladium nanocatalyst was supported on l-threonine functionalized magnetic mesocellular silica foams (MMCF@Thr-Pd) and was characterized by FT-IR, XRD, BET, SEM, EDS, VSM, TGA, ICP-OES and elemental mapping techniques. The obtained MMCF@Thr-Pd performance can show excellent catalytic activity for Stille, Suzuki, and Heck coupling reactions, and the corresponding products were obtained with high yields. More importantly, the efficient and stable MMCF@Thr-Pd nanocatalyst was recovered by applying an external magnetic field and reused for at least five consecutive runs without a change in the catalytic activity.
Collapse
Affiliation(s)
- Zeinab Shirvandi
- Department of Chemistry, Faculty of Science, University of Kurdistan 66177-15175 Sanandaj Iran
| | | | - Amin Rostami
- Department of Chemistry, Faculty of Science, University of Kurdistan 66177-15175 Sanandaj Iran
| |
Collapse
|
4
|
Zeng Z, Chen Y, Zhu X, Yu L. Polyaniline-supported nano metal-catalyzed coupling reactions: Opportunities and challenges. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Aryanasab F. Mizoroki–Heck coupling reaction on the surface of sepiolite clay-supported Pd/Cu nanoalloy. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2034883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fezzeh Aryanasab
- Chemistry Research Group, Chemistry and Petrochemical Research Center, Standard Research Institute (SRI), Karaj, Iran
| |
Collapse
|
6
|
Gholinejad M, Esmailoghli H, Khosravi F, Sansano JM. Ionic Liquid Modified Carbon Nanotube Supported Palladium Nanoparticles for Efficient Sonogashira-Hagihara Reaction. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Pei X, Li Y, Lu L, Jiao H, Gong W, Zhang L. Highly Dispersed Pd Clusters Anchored on Nanoporous Cellulose Microspheres as a Highly Efficient Catalyst for the Suzuki Coupling Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44418-44426. [PMID: 34495649 DOI: 10.1021/acsami.1c12850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the depletion of nonrenewable resources such as oil/coal/gas, more and more research studies began to focus on the high-value utilization of residual biomass resources. Herein, for the first time, honeycomb nanoporous microspheres fabricated from renewable biomass resources of cellulose were used as a carrier to fabricate a highly dispersed palladium (Pd) nanocatalyst. Various physicochemical characterizations presented convincing pieces of evidence for the good dispersion of Pd clusters with a mean diameter of 1.6 nm. As the carrier, cellulose microspheres with an interconnected nanoporous structure contributed to the adhesion and dispersion of Pd particles, and their rich hydroxyl groups could fix the Pd particles. Importantly, the cellulose matrix could in situ induce the formation of metallic Pd(0) during calcination without a reductant. The cellulose/Pd catalyst was applied to the Suzuki coupling reaction, which exhibited promising catalytic activity compared to commercial Pd/C and unsupported homogeneous Pd(OAc)2 catalysts, as well as good stability. The utilization of the residual biomass resource to build catalyst materials would be important for the sustainable chemistry.
Collapse
Affiliation(s)
- Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huibin Jiao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Luo Z, Xiang D, Pei X, Wang L, Zhao Z, Sun W, Ran M, Dai T. Enhanced Performance of Palladium Catalyst Confined Within Carbon Nanotubes for Heck Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03577-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Pei X, Li Y, Deng Y, Lu L, Li W, Shi R, Lei A, Zhang L. Chitin microsphere supported Pd nanoparticles as an efficient and recoverable catalyst for CO oxidation and Heck coupling reaction. Carbohydr Polym 2021; 251:117020. [PMID: 33142581 DOI: 10.1016/j.carbpol.2020.117020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Chitin derived from seafood wastes is a sustainable biopolymer, which can be used to constructe new materials to reduce the environmental pollution caused by non-biodegradable plastics. Herein, nanofibrous microspheres fabricated from chitin solution were used as carriers to construct three different chitin-supported Pd catalysts through diverse activation methods, subsequently revealed their differences in structure and performance. The palladium nanoparticles were firmly and highly dispersed on the microspheres due to the interconnected nanofibrous networks and functional groups of chitin, confirmed by various physicochemical characterizations. As the best candidate catalyst of Pd/chitin-Ar, in the CO oxidation reaction, which achieved 100% CO conversion with a lower Pd content, and exhibited excellent stability in 24-hours cycle reaction. Importantly, the catalyst was further applied in Heck coupling reaction, which also displayed competitive catalytic activity and stability (∼6runs, 94%). This utilizing of biomass resource to build catalyst materials would be important for the sustainable chemistry.
Collapse
Affiliation(s)
- Xianglin Pei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Deng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wendian Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Renyi Shi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Zhao M, Wu Y, Cao J. Carbon‐Based Material‐Supported Palladium Nanocatalysts in Coupling Reactions: Discussion on their Stability and Heterogeneity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ming Zhao
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education)China University of Mining & Technology Xuzhou 221116 Jiangsu China
- Pizhou Economic and Technological Development Zone Pizhou 221300 China
| | - Yaxing Wu
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education)China University of Mining & Technology Xuzhou 221116 Jiangsu China
| | - Jing‐Pei Cao
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education)China University of Mining & Technology Xuzhou 221116 Jiangsu China
| |
Collapse
|
11
|
A robust host-guest interaction controlled probe immobilization strategy for the ultrasensitive detection of HBV DNA using hollow HP5-Au/CoS nanobox as biosensing platform. Biosens Bioelectron 2020; 153:112051. [PMID: 32056664 DOI: 10.1016/j.bios.2020.112051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/15/2023]
Abstract
The combination of supramolecular chemistry and nanotechnology has potentially applied in the construction of biosensors, and thus improves the analytical performance and robustness of electron devices. Herein, a new sandwich-type DNA sensor was constructed for ultrasensitive determination of hepatitis B virus (HBV) DNA, a recognized marker for chronic hepatitis B. The water-soluble pillar[5]arene stabilized Pd NPs combined with reduced graphene oxide nanosheet (WP5-Pd/RGO) was synthesized and employed as supporting material for the modification of electrode surface. The probe DNA was immobilized onto the electrode surface through a new strategy based on the host-guest interaction between WP5 and methylene blue labeled DNA (MB-DNA). Moreover, MOF-derived cobalt sulfide nanobox was prepared to anchor the hydroxylatopillar[5]arene stabilized Au NPs (HP5-Au/CoS), which had superior electrocatalytic performance towards H2O2 reduction to achieve signal amplification. Under the optimized conditions, the proposed sensor displayed a linear relationship between amperometric currents and the logarithm of tDNA solution from 1 × 10-15 mol/L to 1 × 10-9 mol/L, and a low detection limit of 0.32 fmol/L. What's more, the DNA sensor had remarkable behaviors of stability, reproducibility, specificity, and accuracy, which provided a potential and promising prospect for clinical diagnosis and analysis.
Collapse
|
12
|
Van Vaerenbergh B, Lauwaert J, Vermeir P, Thybaut JW, De Clercq J. Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00197j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A walk-through of nanoparticle–reactant/product, nanoparticle–support and support–reactant/product interaction effects on the catalytic performance of heterogeneous palladium catalysts in liquid-phase reactions.
Collapse
Affiliation(s)
- Beau Van Vaerenbergh
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| | - Jeroen Lauwaert
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| | - Pieter Vermeir
- Ghent University
- Faculty of Bioscience Engineering
- Department of Green Chemistry and Technology
- Laboratory for Chemical Analyses (LCA)
- Ghent
| | - Joris W. Thybaut
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Laboratory for Chemical Technology (LCT)
| | - Jeriffa De Clercq
- Ghent University
- Faculty of Engineering and Architecture
- Department of Materials
- Textiles and Chemical Engineering
- Industrial Catalysis and Adsorption Technology (INCAT)
| |
Collapse
|
13
|
Magnetic Fe3O4 supported PdAu bimetallic nanoparticles with the enhanced catalytic activity for Heck and Suzuki cross-coupling reactions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Gholinejad M, Naghshbandi Z, Nájera C. Carbon‐Derived Supports for Palladium Nanoparticles as Catalysts for Carbon‐Carbon Bonds Formation. ChemCatChem 2019. [DOI: 10.1002/cctc.201802101] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mohammad Gholinejad
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195–1159, Gavazang Zanjan 45137-66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST)Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Zhwan Naghshbandi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195–1159, Gavazang Zanjan 45137-66731 Iran
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universidad de Alicante Apdo. 99 E-03080- Alicante Spain
| |
Collapse
|
15
|
Synthesis and support interaction effects on the palladium nanoparticle catalyst characteristics. ADVANCES IN CATALYSIS 2019. [DOI: 10.1016/bs.acat.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|