1
|
Manca L, Senzacqua G, Stoccoro S, Zucca A. Regioselective C(sp 2)-C(sp 3) Coupling Mediated by Classical and Rollover Cyclometalation. Molecules 2024; 29:707. [PMID: 38338451 PMCID: PMC10856536 DOI: 10.3390/molecules29030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
By taking advantage of a sequence of oxidative addition/reductive elimination reactions, Pt(II) cyclometalated derivatives are able to promote a rare C(sp2)-C(sp3) bond coupling, resulting in the production of novel methyl-substituted pyridines and bipyridines. Starting from 6-phenyl-2,2'-bipyridine, the step-by-step full sequence of reactions has been followed, leading to the unprecedented 3-methyl-6-phenyl-2,2'-bipyridine, which was isolated and fully characterized. The synthesis involves the following steps: (1) rollover cyclometalation to give the starting complex [Pt(N^C)(DMSO)Me]; (2) the synthesis of a more electron-rich complex [Pt(N^C)(PPh3)Me] by the substitution of DMSO with triphenylphosphine; (3) oxidative addition with methyl iodide to give the Pt(IV) complex [Pt(N^C)(PPh3)(Me)2(I)]; (4) iodide abstraction with silver tetrafluoborate to give an unstable pentacoordinate intermediate, which rapidly evolves through a carbon-carbon reductive coupling, forming a new C(sp3)-C(sp2) bond; (5) finally, the extrusion and characterization of the newly formed 3-methyl-6-phenyl-2,2'-bipyridine. The reaction has been therefore extended to a well-known classical cyclometalating ligand, 2-phenylpyridine, demonstrating that the method is not restricted to rollover derivatives. Following the same step-by-step procedure, 2-phenylpyridine was converted to 2-o-tolyl-pyridine, displaying the potential application of the method to the larger family of classical cyclometalated complexes. The application of this protocol may be useful to convert an array of heterocyclic compounds to their methyl- or alkyl-substituted analogs.
Collapse
Affiliation(s)
- Lorenzo Manca
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.M.); (G.S.); (S.S.)
| | - Giacomo Senzacqua
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.M.); (G.S.); (S.S.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Villa La Rocca, Via Celso Ulpiani, 27, 70126 Bari, Italy
| | - Sergio Stoccoro
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.M.); (G.S.); (S.S.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Villa La Rocca, Via Celso Ulpiani, 27, 70126 Bari, Italy
| | - Antonio Zucca
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (L.M.); (G.S.); (S.S.)
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), Villa La Rocca, Via Celso Ulpiani, 27, 70126 Bari, Italy
| |
Collapse
|
2
|
Bavi M, Nabavizadeh SM, Hosseini FN, Hoseini SJ, Friedel JN, Klein A. Cross-Coupling versus Homo-Coupling at a Pt(IV) Center: Computational and Experimental Approaches. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Marzieh Bavi
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | | | - S. Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Joshua Nicolas Friedel
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Köln, Germany
| | - Axel Klein
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Köln, Germany
| |
Collapse
|
3
|
Liberman-Martin AL, Van Vleet MJ, Elenberger T, Cave RJ, Williams NSB. Geometric Control of Carbon–Carbon Reductive Elimination from a Platinum(IV) Pincer Complex. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Mary J. Van Vleet
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane SW, Atlanta, Georgia 30314, United States
| | - Tamara Elenberger
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Robert J. Cave
- Department of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Nancy S. B. Williams
- The Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, 925 North Mills Avenue, Claremont, California 91711, United States
| |
Collapse
|
4
|
de las Heras L, Esteruelas MA, Oliván M, Oñate E. C-Cl Oxidative Addition and C-C Reductive Elimination Reactions in the Context of the Rhodium-Promoted Direct Arylation. Organometallics 2022; 41:716-732. [PMID: 35368715 PMCID: PMC8966374 DOI: 10.1021/acs.organomet.1c00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 01/09/2023]
Abstract
A cycle of stoichiometric elemental reactions defining the direct arylation promoted by a redox-pair Rh(I)-Rh(III) is reported. Starting from the rhodium(I)-aryl complex RhPh{κ3-P,O,P-[xant(PiPr2)2]} (xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene), the reactions include C-Cl oxidative addition of organic chlorides, halide abstraction from the resulting six-coordinate rhodium(III) derivatives, C-C reductive coupling between the initial aryl ligand and the added organic group, oxidative addition of a C-H bond of a new arene, and deprotonation of the generated hydride-rhodium(III)-aryl species to form a new rhodium(I)-aryl derivative. In this context, the kinetics of the oxidative additions of 2-chloropyridine, chlorobenzene, benzyl chloride, and dichloromethane to RhPh{κ3-P,O,P-[xant(PiPr2)2]} and the C-C reductive eliminations of biphenyl and benzylbenzene from [RhPh2{κ3-P,O,P-[xant(PiPr2)2]}]BF4 and [RhPh(CH2Ph){κ3-P,O,P-[xant(PiPr2)2]}]BF4, respectively, have been studied. The oxidative additions generally involve the cis addition of the C-Cl bond of the organic chloride to the rhodium(I) complex, being kinetically controlled by the C-Cl bond dissociation energy; the weakest C-Cl bond is faster added. The C-C reductive elimination is kinetically governed by the dissociation energy of the formed bond. The C(sp3)-C(sp2) coupling to give benzylbenzene is faster than the C(sp2)-C(sp2) bond formation to afford biphenyl. In spite of that a most demanding orientation requirement is needed for the C(sp3)-C(sp2) coupling than for the C(sp2)-C(sp2) bond formation, the energetic effort for the pregeneration of the C(sp3)-C(sp2) bond is lower. As a result, the weakest C-C bond is formed faster.
Collapse
Affiliation(s)
- Laura
A. de las Heras
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
5
|
Canty AJ, Ariafard A, van Koten G. Computational Study of Bridge Splitting, Aryl Halide Oxidative Addition to Pt II , and Reductive Elimination from Pt IV : Route to Pincer-Pt II Reagents with Chemical and Biological Applications. Chemistry 2021; 27:15426-15433. [PMID: 34473849 DOI: 10.1002/chem.202102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/06/2022]
Abstract
Density functional theory computation indicates that bridge splitting of [PtII R2 (μ-SEt2 )]2 proceeds by partial dissociation to form R2 Pta (μ-SEt2 )Ptb R2 (SEt2 ), followed by coordination of N-donor bromoarenes (L-Br) at Pta leading to release of Ptb R2 (SEt2 ), which reacts with a second molecule of L-Br, providing two molecules of PtR2 (SEt2 )(L-Br-N). For R=4-tolyl (Tol), L-Br=2,6-(pzCH2 )2 C6 H3 Br (pz=pyrazol-1-yl) and 2,6-(Me2 NCH2 )2 C6 H3 Br, subsequent oxidative addition assisted by intramolecular N-donor coordination via PtII Tol2 (L-N,Br) and reductive elimination from PtIV intermediates gives mer-PtII (L-N,C,N)Br and Tol2 . The strong σ-donor influence of Tol groups results in subtle differences in oxidative addition mechanisms when compared with related aryl halide oxidative addition to palladium(II) centres. For R=Me and L-Br=2,6-(pzCH2 )2 C6 H3 Br, a stable PtIV product, fac-PtIV Me2 {2,6-(pzCH2 )2 C6 H3 -N,C,N)Br is predicted, as reported experimentally, acting as a model for undetected and unstable PtIV Tol2 {L-N,C,N}Br undergoing facile Tol2 reductive elimination. The mechanisms reported herein enable the synthesis of PtII pincer reagents with applications in materials and bio-organometallic chemistry.
Collapse
Affiliation(s)
- Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Gerard van Koten
- Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
6
|
Behnia A, A. Fard M, Blacquiere JM, Puddephatt RJ. Cycloneophylpalladium(IV) Complexes: Formation by Oxidative Addition and Selectivity of Their Reductive Elimination Reactions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ava Behnia
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Mahmood A. Fard
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Johanna M. Blacquiere
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Richard J. Puddephatt
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
7
|
Puddephatt RJ. Selectivity in carbon–carbon coupling reactions at palladium(IV) and platinum(IV). CAN J CHEM 2019. [DOI: 10.1139/cjc-2019-0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The isomerization and reductive elimination reactions from octahedral organometallic complexes of palladium(IV) and platinum(IV) usually occur through five-coordinate intermediates that cannot be directly detected. This paper reports a computational study of five-coordinate complexes of formulae [PtMe3(bipy)]+, [PtMe2Ph(bipy)]+, and [PtMe(CH2CMe2C6H4)(bipy)]+ (M = Pd or Pt, bipy = 2,2′-bipyridine), particularly with respect to reactivity and selectivity in reductive elimination. All of the complexes are predicted to have square pyramidal structures with the bipy and two R groups in the equatorial positions and one R group in the axial position, and axial–equatorial exchange occurs by a pairwise mechanism, with the transition state having a pinched trigonal bipyramidal (PTBP) stereochemistry, with one nitrogen and two R groups in the trigonal plane. The activation energy for isomerization is lower than that for reductive elimination in all cases. For the complexes [MMe2Ph(bipy)]+, the activation energies for reductive elimination with Me–Me or Me–Ph coupling are similar. For the complexes [MMe(CH2CMe2C6H4)(bipy)]+, the reductive elimination with Me–C6H4 bond formation from the isomer with the methyl group in the axial position is predicted and is attributed to it having the best conformation of the Me and C6H4 groups for C–C bond formation. In all cases, the selectivity for reductive elimination is similar for M = Pd or Pt, but reactivity is higher for M = Pd. The relevance of this work to selectivity in catalysis is discussed.
Collapse
Affiliation(s)
- Richard J. Puddephatt
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
8
|
Fortuño C, Martín A, Mastrorilli P, Todisco S, Latronico M. Mixed Valence Pt(II),Pt(IV),Pt(II) Complexes from a Diplatinum(III) Synthon and Sulfur-Based Anions. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Consuelo Fortuño
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., E-50009 Zaragoza, Spain
| | - Antonio Martín
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., E-50009 Zaragoza, Spain
| | | | | | | |
Collapse
|
9
|
Guo Z, Gong D, Hu B, Chen D. Regioselectivity in C–H activation: Reactions of N-heterocyclic indenes with Ru3(CO)12. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Chamyani S, Shahsavari HR, Abedanzadeh S, Golbon Haghighi M, Shabani S, Notash B. Carbon-iodide bond activation by cyclometalated Pt (II) complexes bearing tricyclohexylphosphine ligand: A comparative kinetic study and theoretical elucidation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Samira Chamyani
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Hamid R. Shahsavari
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Sedigheh Abedanzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran; Tehran Iran
| | | | - Sepideh Shabani
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); Zanjan 45137-66731 Iran
| | - Behrouz Notash
- Department of Chemistry; Shahid Beheshti University; Evin Tehran 19839-69411 Iran
| |
Collapse
|
11
|
Fard MA, Behnia A, Puddephatt RJ. Cycloneophylplatinum Chemistry: A New Route to Platinum(II) Complexes and the Mechanism and Selectivity of Protonolysis of Platinum–Carbon Bonds. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahmood Azizpoor Fard
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ava Behnia
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Richard J. Puddephatt
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
12
|
Behnia A, Fard MA, Blacquiere JM, Puddephatt RJ. Mild and selective Pd-Ar protonolysis and C-H activation promoted by a ligand aryloxide group. Dalton Trans 2018; 47:3538-3548. [PMID: 29435552 DOI: 10.1039/c8dt00437d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A bidentate nitrogen-donor ligand with an appended phenol group, C5H4NCH[double bond, length as m-dash]N-2-C6H4OH, H(L1) was treated with a palladium cycloneophyl complex [Pd(CH2CMe2C6H4)(COD)], with both Pd-aryl and Pd-alkyl bonds, to give a Pd-alkyl complex, [Pd(CH2CMe2C6H5)(κ3-N,N',O-OC6H4N[double bond, length as m-dash]CH(2-C5H4N))], 1. The cleavage of the Pd-aryl bond and the deprotonation of the ligand phenol to afford a bound aryloxide, indicates facile Pd-aryl bond protonolysis. Deuterium labelling experiments confirmed that the ligand phenol promotes protonolysis and that the reverse, aryl C-H activation, occurs under very mild reaction conditions (within 10 min at room temperature). An unusual isomerization of the Pd-alkyl complex 1 to a Pd-aryl complex, [Pd(C6H4(2-t-Bu))(κ3-N,N',O-OC6H4N[double bond, length as m-dash]CH(2-C5H4N))], 2, was observed to give an equilibrium with [2]/[1] = 9 after 5 days in methanol. The isomerization requires that both aryl C-H activation and Pd-alkyl protonolysis steps occur. The very large KIE value (kH/kD = ca. 40) for isomerization of 1 to 2, suggests a concerted SE2-type mechanism for the Pd-alkyl protonolysis step.
Collapse
Affiliation(s)
- Ava Behnia
- Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7.
| | | | | | | |
Collapse
|
13
|
Shahsavari HR, Babadi Aghakhanpour R, Fereidoonnezhad M. An in-depth investigation on the C–I bond activation by rollover cycloplatinated(ii) complexes bearing monodentate phosphane ligands: kinetic and kinetic isotope effect. NEW J CHEM 2018. [DOI: 10.1039/c7nj04159d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidative addition reaction of MeI reagent to some cycloplatinated(ii) complexes was performed and kinetically investigated.
Collapse
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | | | - Masood Fereidoonnezhad
- Department of Medicinal Chemistry
- School of Pharmacy
- Toxicology Research Center
- Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
| |
Collapse
|
14
|
Shaw PA, Clarkson GJ, Rourke JP. Oxidation of an o-tolyl phosphine complex of platinum: C-H activation and transcyclometallation. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Shaw PA, Clarkson GJ, Rourke JP. Reversible C-C bond formation at a triply cyclometallated platinum(iv) centre. Chem Sci 2017; 8:5547-5558. [PMID: 28970934 PMCID: PMC5618794 DOI: 10.1039/c7sc01361b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022] Open
Abstract
The oxidation of the tribenzylphosphine derivative of the doubly cylcometallated platinum(ii) complex of diphenylpyridine, 1, with PhICl2 led, as a first step, to the formation of a highly electrophilic metal centre which attacked the benzyl phosphine to give a triply cyclometallated species as the arenium ion. The highly acidic arenium ion protonated unreacted starting 1, a reaction that could be supressed by the addition of water, and gave the neutral species 2(t). Octahedral complex 2(t) was induced to reductively couple, with two five-membered rings coupling to give square planar complex 5 containing a nine-membered ring. The crystal structure of 5 showed the nine-membered ring to span trans across the square planar metal accompanied by considerable distortion: the P-Pt-N bond angle is 155.48(5)°. Oxidation of 5 with PhICl2 resulted in the addition of two chlorides and a change of the nine-membered ring ligand coordination to cis at an octahedral centre, still with considerable distortions: the P-Pt-N bond angle in the crystal structure of 6 is 99.46(5)°. Treatment of 2(t) with AgBF4 also induced a coupling to give a nine-membered ring, and the fluxional three coordinate complex 7. A mono-methylated version of 1, Me-1, was prepared and similar reactions were observed. The presence of the methyl group allowed us to observe selectivity in the coupling reaction to give the nine-membered ring, with two products (a-Me-7 and b-Me7) being initially formed in the ratio 7 : 1. The concentrations of two products changed with time giving a final ratio of 1 : 8 at room temperature (half-life 48 hours), the equilibration being made possible by a reversible C-C bond forming reaction. Reaction of complexes 7 with CO or hydrogen left the nine-membered ring intact, though oxidative degradation resulted in decomplexation of the phosphine donor, accompanied by formation of a P[double bond, length as m-dash]O group.
Collapse
Affiliation(s)
- Paul A Shaw
- Department of Chemistry , Warwick University , Coventry , UK CV4 7AL .
| | - Guy J Clarkson
- Department of Chemistry , Warwick University , Coventry , UK CV4 7AL .
| | - Jonathan P Rourke
- Department of Chemistry , Warwick University , Coventry , UK CV4 7AL .
| |
Collapse
|