1
|
Chen S, Wei J, Ren X, Song K, Sun J, Bai F, Tian S. Recent Progress in Porphyrin/g-C 3N 4 Composite Photocatalysts for Solar Energy Utilization and Conversion. Molecules 2023; 28:molecules28114283. [PMID: 37298759 DOI: 10.3390/molecules28114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Transforming solar energy into chemical bonds is a promising and viable way to store solar energy. Porphyrins are natural light-capturing antennas, and graphitic carbon nitride (g-C3N4) is an effective, artificially synthesized organic semiconductor. Their excellent complementarity has led to a growing number of research papers on porphyrin/g-C3N4 hybrids for solar energy utilization. This review highlights the recent progress in porphyrin/g-C3N4 composites, including: (1) porphyrin molecules/g-C3N4 composite photocatalysts connected via noncovalent or covalent interactions, and (2) porphyrin-based nanomaterials/g-C3N4 composite photocatalysts, such as porphyrin-based MOF/g-C3N4, porphyrin-based COF/g-C3N4, and porphyrin-based assembly/g-C3N4 heterojunction nanostructures. Additionally, the review discusses the versatile applications of these composites, including artificial photosynthesis for hydrogen evolution, CO2 reduction, and pollutant degradation. Lastly, critical summaries and perspectives on the challenges and future directions in this field are also provided.
Collapse
Affiliation(s)
- Sudi Chen
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative, Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jiajia Wei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| | - Xitong Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative, Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Keke Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| | - Jiajie Sun
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative, Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shufang Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Bhaduri SN, Ghosh D, Debnath S, Biswas R, Chatterjee PB, Biswas P. Copper(II)-Incorporated Porphyrin-Based Porous Organic Polymer for a Nonenzymatic Electrochemical Glucose Sensor. Inorg Chem 2023; 62:4136-4146. [PMID: 36862998 DOI: 10.1021/acs.inorgchem.2c04072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
To date, the fabrication of multifunctional nanoplatforms based on a porous organic polymer for electrochemical sensing of biorelevant molecules has received considerable attention in the search for a more active, robust, and sensitive electrocatalyst. Here, in this report, we have developed a new porous organic polymer based on porphyrin (TEG-POR) from a polycondensation reaction between a triethylene glycol-linked dialdehyde and pyrrole. The Cu(II) complex of the polymer Cu-TEG-POR shows high sensitivity and a low detection limit for glucose electro-oxidation in an alkaline medium. The characterization of the as-synthesized polymer was done by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and 13C CP-MAS solid-state NMR. The N2 adsorption/desorption isotherm was carried out at 77 K to analyze the porous property. TEG-POR and Cu-TEG-POR both show excellent thermal stability. The Cu-TEG-POR-modified GC electrode shows a low detection limit (LOD) value of 0.9 μM and a wide linear range (0.001-1.3 mM) with a sensitivity of 415.8 μA mM-1 cm-2 toward electrochemical glucose sensing. The interference of the modified electrode from ascorbic acid, dopamine, NaCl, uric acid, fructose, sucrose, and cysteine was insignificant. Cu-TEG-POR exhibits acceptable recovery for blood glucose detection (97.25-104%), suggesting its scope in the future for selective and sensitive nonenzymatic glucose detection in human blood.
Collapse
Affiliation(s)
- Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| |
Collapse
|
3
|
He B, Cui Y, Lei Y, Li W, Sun J. Design and application of g-C 3N 4-based materials for fuels photosynthesis from CO 2 or H 2O based on reaction pathway insights. J Colloid Interface Sci 2023; 629:825-846. [PMID: 36202027 DOI: 10.1016/j.jcis.2022.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Photocatalytic CO2 reduction reaction (CRR) and hydrogen evolution reaction (HER) based on graphitic carbon nitride (g-C3N4) that is regarded as the metal-free "holy grail" photocatalyst, provide promising strategies for producing next-generation fuels, contributing to achieving carbon neutrality, alleviating energy and environment crisis. However, the activity of CRR and HER over g-C3N4 leaves much to be desired. Therefore, numerous studies have sprung up to enhance photoactivity. A comprehensive understanding of the CRR and HER reaction pathways is crucial for designing g-C3N4-based materials, further promoting efficient fuel production. Different from previous reviews that focus on g-C3N4 modification from the viewpoint of material science. In this review, we divided the multistep processes of CRR and HER into five reaction pathways and summarized the latest advances for improving each pathway of fuels synthesis through CRR or HER. Meanwhile, the existing bottleneck issues of each step were also discussed. Finally, comprehensive conclusions, including the remaining challenges, outlooks, etc., for CRR and HER over g-C3N4 were put forward. We are sure that this review will conduce to the understanding of the structure-activity relationship between CRR, HER processes, and g-C3N4 structure, which can provide the reference for developing high-powered photocatalysts, not confined to g-C3N4.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuandong Cui
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu Lei
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wenjin Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
4
|
O'Neill JS, Kearney L, Brandon MP, Pryce MT. Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Lei Y, Huang JF, Li XA, Lv CY, Hou CP, Liu JM. Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Nikoloudakis E, López-Duarte I, Charalambidis G, Ladomenou K, Ince M, Coutsolelos AG. Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H 2 production and CO 2 reduction. Chem Soc Rev 2022; 51:6965-7045. [PMID: 35686606 DOI: 10.1039/d2cs00183g] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The increasing energy demand and environmental issues caused by the over-exploitation of fossil fuels render the need for renewable, clean, and environmentally benign energy sources unquestionably urgent. The zero-emission energy carrier, H2 is an ideal alternative to carbon-based fuels especially when it is generated photocatalytically from water. Additionally, the photocatalytic conversion of CO2 into chemical fuels can reduce the CO2 emissions and have a positive environmental and economic impact. Inspired by natural photosynthesis, plenty of artificial photocatalytic schemes based on porphyrinoids have been investigated. This review covers the recent advances in photocatalytic H2 production and CO2 reduction systems containing porphyrin or phthalocyanine derivatives. The unique properties of porphyrinoids enable their utilization both as chromophores and as catalysts. The homogeneous photocatalytic systems are initially described, presenting the various approaches for the improvement of photosensitizing activity and the enhancement of catalytic performance at the molecular level. On the other hand, for the development of the heterogeneous systems, numerous methods were employed such as self-assembled supramolecular porphyrinoid nanostructures, construction of organic frameworks, combination with 2D materials and adsorption onto semiconductors. The dye sensitization on semiconductors opened the way for molecular-based dye-sensitized photoelectrochemical cells (DSPECs) devices based on porphyrins and phthalocyanines. The research in photocatalytic systems as discussed herein remains challenging since there are still many limitations making them unfeasible to be used at a large scale application before finding a large-scale application.
Collapse
Affiliation(s)
- Emmanouil Nikoloudakis
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, Heraklion, Crete, Greece.
| | - Ismael López-Duarte
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Georgios Charalambidis
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, Heraklion, Crete, Greece.
| | - Kalliopi Ladomenou
- International Hellenic University, Department of Chemistry, Laboratory of Inorganic Chemistry, Agios Loucas, 65404, Kavala Campus, Greece.
| | - Mine Ince
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Tarsus University, Mersin, Turkey.
| | - Athanassios G Coutsolelos
- University of Crete, Department of Chemistry, Laboratory of Bioinorganic Chemistry, Voutes Campus, Heraklion, Crete, Greece. .,Institute of Electronic Structure and Laser (IESL) Foundation for Research and Technology - Hellas (FORTH), Vassilika Vouton, Heraklion, Crete, Greece
| |
Collapse
|
7
|
Syntheses of ZnTi-LDH sensitized by tetra (4-carboxyphenyl) porphyrin for accerlating photocatalytic reduction of carbon dioxide. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Liu C, Yang W, Wang C, Liu K, Jiang J. Photophysical Behaviors of Shape-persistent Zinc Porphyrin Organic Cage. NEW J CHEM 2022. [DOI: 10.1039/d2nj00734g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair chiral metallic porphyrin cages, (R)/(S)-PTC-1(Zn), have been afforded by pure chiral cyclohexanediamine reacting with zinc 5,15-di[3',5'-diformyl-(1,1'-biphenyl)]porphyrin. Both their chiral tubular structures have been demonstrated with single crystal diffraction...
Collapse
|
9
|
g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution. Processes (Basel) 2021. [DOI: 10.3390/pr9061055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protonated g-C3N4 (pCN) formed by treating bulk g-C3N4 with an aqueous HCl solution was modified with D149 dye, i.e., 5-[[4[4-(2,2-diphenylethenyl) phenyl]-1,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7-yl] methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-thiazolidin-2-ylidenerhodanine, for photocatalytic water splitting (using Pt as a co-catalyst). The D149/pCN-Pt composite showed a much higher rate (2138.2 µmol·h−1·g−1) of H2 production than pCN-Pt (657.0 µmol·h−1·g−1). Through relevant characterization, the significantly high activity of D149/pCN-Pt was linked to improved absorption of visible light, accelerated electron transfer, and more efficient separation of charge carriers. The presence of both D149 and Pt was found to be important for these factors. A mechanism was proposed.
Collapse
|
10
|
Ostovan A, Papior N, Zahedi M, Moshfegh AZ. Towards developing efficient metalloporphyrin-based hybrid photocatalysts for CO 2 reduction; an ab initio study. Phys Chem Chem Phys 2020; 22:23128-23140. [PMID: 33025986 DOI: 10.1039/d0cp03279d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of thiophene-based donor-acceptor-donor (D-A-D) oligomer substituted metalloporphyrins (MPors) with different 3d central metal-ions (M = Co, Ni, Cu, and Zn) were systematically investigated to screen efficient hybrid photocatalysts for CO2 reduction based on density functional theory (DFT) and time-dependent DFT simulations. Compared with base MPors, the newly designed hybrid photocatalysts have a lower bandgap energy, stronger and broader absorption spectra, and enhanced intermolecular charge transfer, exciton lifetime, and light-harvesting efficiency. Then, the introduction of D-A-D electron donor (ED) groups into the meso-positions of MPors is a promising method for the construction of efficient photocatalysts. According to the calculated adsorption distance, adsorption energy, Hirshfeld charge and electrostatic potential analysis, it was revealed that CO2 physically adsorbed on the designed photocatalyst surface. In addition, among the studied model systems the ZnPor(ED)4 catalyst with four D-A-D electron donors exhibits the best photocatalytic performance due to its broadest absorption spectra with λmax = 500.12 nm and the highest adsorption energy of about 26 kJ mol-1. Finally, the sensing ability of the ZnPor(ED)4-based multi-terminal molecular junction for CO2 gas detection is determined using Green's functions. The transmission plots of this molecular junction are barely changed due to the physical adsorption of CO2 on the molecular surface, leading to the low sensitivity of the device. We believe that such a theoretical design can provide a general approach for further experimental and computational studies of photocatalysts used in the CO2 reduction process.
Collapse
Affiliation(s)
- Azar Ostovan
- Department of Physics, Sharif University of Technology, Tehran, Iran.
| | | | | | | |
Collapse
|
11
|
Min Park J, Lee JH, Jang WD. Applications of porphyrins in emerging energy conversion technologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213157] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Zhang M, Zhu K, Qin L, Kang SZ, Li X. Enhanced electron transfer and photocatalytic hydrogen production over the carbon nitride/porphyrin nanohybrid finely bridged by special copper. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02272d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphitic carbon nitride/tetrakis-(4-hydroxyphenyl)porphyrin nanohybrid smartly fabricated with special Cu showed excellent photocatalytic hydrogen evolution performance.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Kun Zhu
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Lixia Qin
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering
- Center of Graphene Research
- Shanghai Institute of Technology
- Shanghai 201418
- China
| |
Collapse
|
13
|
Zeng P, Zheng Y, Chen S, Liu H, Li R, Peng T. Asymmetric zinc porphyrin derivatives bearing three pseudo-pyrimidine meso-position substituents and their photosensitization for H 2 evolution. NEW J CHEM 2020. [DOI: 10.1039/d0nj02056g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ZnPy-6 has lower steric hindrance than ZnPy-5 when the N atoms of the pseudo-pyrimidines combine with g-C3N4 and AA, and thus it exhibits better photosensitization.
Collapse
Affiliation(s)
- Peng Zeng
- School of Food and Pharmaceutical Engineering
- Zhaoqing University
- Zhaoqing 526061
- P. R. China
- College of Chemistry and Molecular Sciences
| | - Ya Zheng
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Shengtao Chen
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Haoran Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Renjie Li
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Tianyou Peng
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
14
|
Zhang N, Wen L, Yan J, Liu Y. Dye-sensitized graphitic carbon nitride (g-C3N4) for photocatalysis: a brief review. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00929-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Zhuang C, Wang J, Zhou S, Peng T, Zhang J. Ruthenium(II) Pincer Complex Bearing N′NN′- and ONO-Type Ligands as a Titania Sensitizer for Efficient and Stable Visible-Light-Driven Hydrogen Production. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chuangsheng Zhuang
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 P. R. China
| | - Jinming Wang
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 P. R. China
| | - Shengyin Zhou
- Hubei Provincial Supervision and; Inspection Research Institute for Products Quality; Wuhan 430061 P. R. China
| | - Tianyou Peng
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 P. R. China
| | - Jing Zhang
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 P. R. China
| |
Collapse
|