1
|
Kamińska J, Hecel A, Słowik J, Rombel-Bryzek A, Rowińska-Żyrek M, Witkowska D. Characterization of four peptides from milk fermented with kombucha cultures and their metal complexes-in search of new biotherapeutics. Front Mol Biosci 2024; 11:1366588. [PMID: 38638688 PMCID: PMC11024286 DOI: 10.3389/fmolb.2024.1366588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
The most common skin diseases include eczema, psoriasis, acne, and fungal infections. There is often no effective cure for them. Increasing antimicrobial drug resistance prompts us to search for new, safe, and effective therapeutics. Among such interesting candidates are peptides derived from milk fermented with specific lactic acid bacteria or with kombucha cultures, which are a potential treasure trove of bioactive peptides. Four of them are discussed in this article. Their interactions with zinc and copper ions, which are known to improve the well-being of the skin, were characterized by potentiometry, MS, ITC, and spectroscopic methods, and their cytostatic potential was analyzed. The results suggest that they are safe for human cells and can be used alone or in complexes with copper for further testing as potential therapeutics for skin diseases.
Collapse
Affiliation(s)
- Justyna Kamińska
- Institute of Health Sciences, University of Opole, Opole, Poland
| | | | - Joanna Słowik
- Institute of Health Sciences, University of Opole, Opole, Poland
| | | | | | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, Opole, Poland
| |
Collapse
|
2
|
Dzień E, Dudek D, Witkowska D, Rowińska-Żyrek M. Thermodynamic surprises of Cu(II)-amylin analogue complexes in membrane mimicking solutions. Sci Rep 2022; 12:425. [PMID: 35013439 PMCID: PMC8748748 DOI: 10.1038/s41598-021-04197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Membrane environment often has an important effect on the structure, and therefore also on the coordination mode of biologically relevant metal ions. This is also true in the case of Cu(II) coordination to amylin analogues—rat amylin, amylin1–19, pramlintide and Ac-pramlintide, which offer N-terminal amine groups and/or histidine imidazoles as copper(II) anchoring sites. Complex stabilities are comparable, with the exception of the very stable Cu(II)–amylin1–19, which proves that the presence of the amylin C-terminus lowers its affinity for copper(II); although not directly involved, its appropriate arrangement sterically prevents early metal binding. Most interestingly, in membrane-mimicking solution, the Cu(II) affinities of amylin analogues are lower than the ones in water, probably due to the crowding effect of the membrane solution and the fact that amide coordination occurs at higher pH, which happens most likely because the α-helical structure, imposed by the membrane-mimicking solvent, prevents the amides from binding at lower pH, requiring a local unwinding of the α-helix.
Collapse
Affiliation(s)
- Emilia Dzień
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Dorota Dudek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060, Opole, Poland.
| | | |
Collapse
|
3
|
Hecel A, Kola A, Valensin D, Kozlowski H, Rowinska-Zyrek M. Metal specificity of the Ni(II) and Zn(II) binding sites of the N-terminal and G-domain of E. coli HypB. Dalton Trans 2021; 50:12635-12647. [PMID: 34545874 DOI: 10.1039/d1dt02126e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HypB is one of the chaperones required for proper nickel insertion into [NiFe]-hydrogenase. Escherichia coli HypB has two potential Ni(II) and Zn(II) binding sites-the N-terminal one and the so-called GTPase one. The metal-loaded HypB-SlyD metallochaperone complex activates nickel release from the N-terminal HypB site. In this work, we focus on the metal selectivity of the two HypB metal binding sites and show that (i) the N-terminal region binds Zn(II) and Ni(II) ions with higher affinity than the G-domain and (ii) the lower affinity G domain binds Zn(II) more effectively than Ni(II). In addition, the high affinity N-terminal domain, both in water and membrane mimicking SDS solution, has a larger affinity towards Zn(II) than Ni(II), while an opposite situation is observed at basic pH; at pH 7.4, the affinity of this region towards both metals is almost the same. The N-terminal HypB region is also more effective in Ni(II) binding than the previously studied SlyD metal binding regions. Considering that the nickel chaperone SlyD activates the release of nickel and blocks the release of zinc from the N-terminal high-affinity metal site of HypB, we may speculate that such pH-dependent metal affinity might modulate HypB interactions with SlyD, being dependent on both pH and the protein's metal status.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Henryk Kozlowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland. .,Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
| | | |
Collapse
|
4
|
Yi Y, Lin Y, Han J, Lee HJ, Park N, Nam G, Park YS, Lee YH, Lim MH. Impact of sphingosine and acetylsphingosines on the aggregation and toxicity of metal-free and metal-treated amyloid-β. Chem Sci 2020; 12:2456-2466. [PMID: 34164011 PMCID: PMC8179336 DOI: 10.1039/d0sc04366d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pathophysiological shifts in the cerebral levels of sphingolipids in Alzheimer's disease (AD) patients suggest a link between sphingolipid metabolism and the disease pathology. Sphingosine (SP), a structural backbone of sphingolipids, is an amphiphilic molecule that is able to undergo aggregation into micelles and micellar aggregates. Considering its structural properties and cellular localization, we hypothesized that SP potentially interacts with amyloid-β (Aβ) and metal ions that are found as pathological components in AD-affected brains, with manifesting its reactivity towards metal-free Aβ and metal-bound Aβ (metal–Aβ). Herein, we report, for the first time, that SP is capable of interacting with both Aβ and metal ions and consequently affects the aggregation of metal-free Aβ and metal–Aβ. Moreover, incubation of SP with Aβ in the absence and presence of metal ions results in the aggravation of toxicity induced by metal-free Aβ and metal–Aβ in living cells. As the simplest acyl derivatives of SP, N-acetylsphingosine and 3-O-acetylsphingosine also influence metal-free Aβ and metal–Aβ aggregation to different degrees, compared to SP. Such slight structural modifications of SP neutralize its ability to exacerbate the cytotoxicity triggered by metal-free Aβ and metal–Aβ. Notably, the reactivity of SP and the acetylsphingosines towards metal-free Aβ and metal–Aβ is determined to be dependent on their formation of micelles and micellar aggregates. Our overall studies demonstrate that SP and its derivatives could directly interact with pathological factors in AD and modify their pathogenic properties at concentrations below and above critical aggregation concentrations. The reactivity of sphingosine and acetylsphingosines towards both metal-free and metal-treated amyloid-β is demonstrated showing a correlation of their micellization properties.![]()
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yuxi Lin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
| | - Jiyeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University Gongju 32588 Republic of Korea
| | - Nahye Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Young S Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea .,Research Headquarters, Korea Brain Research Institute (KBRI) Daegu 41068 Republic of Korea.,Bio-Analytical Science, University of Science and Technology (UST) Daejeon 34113 Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
5
|
Structural Consequences of Copper Binding to the Prion Protein. Cells 2019; 8:cells8080770. [PMID: 31349611 PMCID: PMC6721516 DOI: 10.3390/cells8080770] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Prion, or PrPSc, is the pathological isoform of the cellular prion protein (PrPC) and it is the etiological agent of transmissible spongiform encephalopathies (TSE) affecting humans and animal species. The most relevant function of PrPC is its ability to bind copper ions through its flexible N-terminal moiety. This review includes an overview of the structure and function of PrPC with a focus on its ability to bind copper ions. The state-of-the-art of the role of copper in both PrPC physiology and in prion pathogenesis is also discussed. Finally, we describe the structural consequences of copper binding to the PrPC structure.
Collapse
|
6
|
Hecel A, Valensin D, Kozłowski H. How copper ions and membrane environment influence the structure of the human and chicken tandem repeats domain? J Inorg Biochem 2018; 191:143-153. [PMID: 30529722 DOI: 10.1016/j.jinorgbio.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
Prion proteins (PrPs) from different species have the enormous ability to anchor copper ions. The N-terminal domain of human prion protein (hPrP) contains four tandem repeats of the -PHGGGWGQ- octapeptide sequence. This octarepeat domain can bind up to four Cu2+ ions. Similarly to hPrP, chicken prion protein (chPrP) is able to interact with Cu2+ through the tandem hexapeptide -HNPGYP- region (residues 53-94). In this work, we focused on the human octapeptide repeat (human Octa4, hPrP60-91) (Ac-PHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQ-NH2) and chicken hexapeptide repeat (chicken Hexa4, chPrP54-77) (Ac-HNPGYPHNPGYPHNPGYPHNPGYP-NH2) prion protein fragments. Due to the fact that PrP is a membrane-anchored glycoprotein and its unstructured and flexible N-terminal domain may interact with the lipid bilayer, our studies were carried out in presence of the surfactant sodium dodecyl sulfate (SDS) mimicking the membrane environment in vitro. The main objective of this work was to understand the effects of copper ion on the structural rearrangements of the human and chicken N-terminal repeat domain. The obtained results provide a fundamental first step in describing the thermodynamic (potentiometric titrations) and structural properties of Cu(II) binding (UV-Vis, NMR, CD spectroscopy) to both human Octa4 and chicken Hexa4 repeats in both a DMSO/water and SDS micelle environment. Interestingly, in SDS environment, both ligands indicate different copper coordination modes, which results of the conformational changes in micelle environment. Our results strongly support that copper binding mode strongly depends on the protein backbone structure. Moreover, we focused on previously obtained results for amyloidogenic human and chicken fragments in membrane mimicking environment.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland.
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Henryk Kozłowski
- Opole Medical School in Opole, Katowicka 68, 45060 Opole, Poland
| |
Collapse
|
7
|
Okada M, Kajimoto S, Nakabayashi T. Embedding a Metal-Binding Motif for Copper Transporter into a Lipid Bilayer by Cu(I) Binding. J Phys Chem B 2018; 122:6364-6370. [DOI: 10.1021/acs.jpcb.8b03179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mariko Okada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|