1
|
Purohit S, Oswal P, Bahuguna A, Tyagi A, Bhatt N, Kumar A. Catalytic system having an organotellurium ligand on graphene oxide: immobilization of Pd(0) nanoparticles and application in heterogeneous catalysis of cross-coupling reactions. RSC Adv 2024; 14:27092-27109. [PMID: 39193294 PMCID: PMC11348857 DOI: 10.1039/d4ra03401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
First heterogeneous catalytic system, having a covalently linked hybrid bidentate organotellurium ligand [i.e., PhTe-CH2-CH2-NH2] on the surface of graphene oxide, has been synthesized with immobilized and stabilized Pd(0) nanoparticles. To the best of our knowledge, it is the first such catalytic system in which a heterogenized organotellurium ligand has been used. It has been well-characterized using different physicochemical characterization techniques viz. P-XRD, XPS, HR-TEM, EELS, FE-SEM, EDX, TGA, BET surface area analysis, FT-IR spectroscopy, and Raman spectroscopy. The Pd content of the final system has been quantified using ICP-OES. Its applications have been explored in Suzuki-Miyaura C-C cross coupling and C-O cross coupling reactions. Hot filtration experiments corroborate the heterogeneous nature of the catalysis. It is recyclable for up to five reaction cycles in Suzuki-Miyaura and C-O cross coupling with marginal loss in performance. It also catalyzes the reactions of chloroarenes such as chlorobenzene, 4-chloroaniline, 1-chloro-4-nitrobenzene, 4-chloroacetophenone, 4-chlorobenzophenone for Suzuki coupling, and 1-chloro-4-nitrobenzene, 4-chlorobenzonitrile, chlorobenzene, and 4-chlorotoluene for C-O coupling. P-XRD, FE-SEM, and EDX study reveals that the catalytic system retains its structural originality and functionality after recycling.
Collapse
Affiliation(s)
- Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Neeraj Bhatt
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University Dehradun-248001 India
| |
Collapse
|
2
|
Arora A, Oswal P, Sharma D, Tyagi A, Purohit S, Sharma P, Kumar A. Molecular Organosulphur, Organoselenium and Organotellurium Complexes as Homogeneous Transition Metal Catalytic Systems for Suzuki Coupling. ChemistrySelect 2022. [DOI: 10.1002/slct.202201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aayushi Arora
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Preeti Oswal
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Deepali Sharma
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Anupma Tyagi
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Suraj Purohit
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| | - Pankaj Sharma
- Instituto de Química National Autonomous University of Mexico (UNAM) Circuito Exterior Mexico 04510
| | - Arun Kumar
- Department of Chemistry School of Physical Sciences Doon University Dehradun 248012 India
| |
Collapse
|
3
|
Sharma D, Arora A, Oswal P, Bahuguna A, Datta A, Kumar A. Organosulphur and organoselenium compounds as emerging building blocks for catalytic systems for O-arylation of phenols, a C-O coupling reaction. Dalton Trans 2022; 51:8103-8132. [PMID: 35535745 DOI: 10.1039/d1dt04371d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diaryl ethers form an important class of organic compounds. The classic copper-mediated Ullmann diaryl ether synthesis has been known for many years and involves the coupling of phenols with aryl halides. However, the use of high reaction temperature, high catalyst loading and expensive ligands has created a need for the development of alternative catalytic systems. In the recent past, organosulphur and organoselenium compounds have been used as building blocks for developing homogeneous, heterogeneous and nanocatalysts for this C-O coupling reaction. Homogeneous catalytic systems include preformed complexes of metals with organosulphur and organoselenium ligands. The performance of such complexes is influenced dramatically by the nature of the chalcogen (S or Se) donor site of the ligand. Nanocatalytic systems (including Pd17Se15, Pd16S7 and Cu1.8S) have been designed using a single-source precursor route. Heterogeneous catalytic systems contain either metal (Cu or Pd) or metal chalcogenides (Pd17Se15 or Cu1.8S) as catalytically active species. This article aims to cover the simple and straightforward methodologies and approaches that are adopted for developing catalytically relevant organosulfur and organoselenium ligands, their homogeneous metal complexes, heterogeneous and nanocatalysts. The effects of chalcogen (S or Se) donor, halogen (Cl/Br/I) of aryl halide, nature (electron withdrawing or electron donating) of substituents present on the aromatic ring of aryl halides or substituted phenols and position (ortho or para) of substitution on the results of catalytic reactions have been critically analyzed and summarized. The effect of composition (Pd17Se15 or Pd16S7) on the performance of nanocatalytic systems is also highlighted. Substrate scope has also been discussed in all three types of catalysis. The superiority of heterogeneous catalytic systems (e.g., Pd17Se15 immobilised on graphene oxide) indicates the bright future possibilities for the development of efficient catalytic systems using similar or tailored ligands for this reaction.
Collapse
Affiliation(s)
- Deepali Sharma
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences (INMAS), India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012 India.
| |
Collapse
|
4
|
Oswal P, Arora A, Singh S, Nautiyal D, Kumar S, Kumar A. Functionalization of graphene oxide with a hybrid P, N ligand for immobilizing and stabilizing economical and non-toxic nanosized CuO: an efficient, robust and reusable catalyst for the C–O coupling reaction in O-arylation of phenol. NEW J CHEM 2022. [DOI: 10.1039/d1nj05273j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new graphene oxide based heterogeneous catalytic system holding CuO nanoparticles through P and N donor sites for the C–O coupling reaction.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, India
| |
Collapse
|
5
|
Singh P, Singh AK. Palladium( ii) complexes of 2,2′-tellurobis( N, N-diphenyl acetamide): efficient catalysts for Suzuki–Miyaura coupling at room temperature under air. NEW J CHEM 2022. [DOI: 10.1039/d1nj03162g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three complexes, [Pd(L2)2Br2](C1), [(L2)PdCl(μ-Cl)2PdCl(L2)](C2), and [Pd(L2)PPh3Cl2](C3), where L2 = 2,2′-tellurobis(N,N-diphenylacetamide), catalyze Suzuki–Miyaura coupling (loading: 0.001 mol % of Pd) of eleven ArX at room temperature under air.
Collapse
Affiliation(s)
- Poornima Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Ajai K. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|
6
|
Preformed molecular complexes of metals with organoselenium ligands: Syntheses and applications in catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213885] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Arora A, Oswal P, Kumar Rao G, Kumar S, Kumar A. Organoselenium ligands for heterogeneous and nanocatalytic systems: development and applications. Dalton Trans 2021; 50:8628-8656. [PMID: 33954317 DOI: 10.1039/d1dt00082a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organoselenium ligands have attracted great attention among researchers during the past two decades. Various homogeneous, heterogeneous and nanocatalytic systems have been designed using such ligands. Although reports on selenium ligated homogeneous catalysts are quite high in number, significant work has also been done on the development of heterogeneous and nanocatalytic systems using organoselenium ligands. A review article, focusing on the utility of organoselenium compounds in the development of catalytic systems, was published in 2012 (A. Kumar, G. K. Rao, F. Saleem and A. K. Singh, Dalton Trans., 2012, 41, 11949). Moreover, it mainly covered the homogeneous catalysts. There are no review articles in the literature on heterogeneous and nanocatalytic systems designed using organoselenium compounds and their applications. Hence, this perspective aims to cover the developments pertaining to the synthetic aspects of such catalytic systems (using organoselenium compounds) and their applications in catalysis of a variety of chemical transformations. Salient features and advantages of organoselenium compounds have also been highlighted to justify the rationale behind their use in catalyst development. Their performance in various chemical transformations [viz. Suzuki-Miyaura coupling, Heck coupling, Sonogashira coupling, O-arylation of phenol, transfer hydrogenation of aldehydes and ketones, aldehyde-alkyne-amine (A3) coupling, hydration of nitriles, conversion of aldehydes to amides, cross-dehydrogenative coupling (CDC), photodegradation of substrates (formic acid, methylene blue), reduction of nitrophenols, electrolysis (hydrogen evolution reaction and oxygen reduction reactions), organocatalysis and dye sensitized solar cells] and relevant aspects of catalytic processes (such as recyclability, substrate scope and green aspects) have been critically analyzed. Future perspectives have also been discussed.
Collapse
Affiliation(s)
- Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Gyandshwar Kumar Rao
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana (AUH), Gurgaon, Haryana 122413, India
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand 248012, India.
| |
Collapse
|
8
|
Palladium complexes of chalcogenoethanamine (S/Se) bidentate ligands: Applications in catalytic arylation of C H and O H bonds. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Chauhan RS. Reactivity of hemi-labile pyridyl and pyrimidyl derived chalcogen ligands towards group 10 metal phosphine precursors. NEW J CHEM 2020. [DOI: 10.1039/c9nj04993b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The reactivity of N-heterocyclic dichalcogenides and their sodium salts towards group 10 metal phosphine precursors has been investigated.
Collapse
Affiliation(s)
- Rohit Singh Chauhan
- Department of Chemistry
- K. J. Somaiya College of Science and Commerce
- Mumbai-400077
- India
| |
Collapse
|
10
|
Oswal P, Arora A, Singh S, Nautiyal D, Kumar S, Rao GK, Kumar A. Organochalcogen ligands in catalysis of oxidation of alcohols and transfer hydrogenation. Dalton Trans 2020; 49:12503-12529. [PMID: 32804180 DOI: 10.1039/d0dt01201g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organochalcogen compounds have been used as the building blocks for the development of a variety of catalysts that have been studied comprehensively during the last two decades for several chemical transformations. Transfer hydrogenation (reduction of carbonyl compounds to alcohols) and oxidation of alcohols (conversion of alcohols to their respective ketones and aldehydes) are also among such chemical transformations. Some compilations are available in the literature on the development of catalysts, based on organochalcogen ligands, and their applications in Heck reaction, Suzuki reaction, and other related aspects. Some review articles have also been published on different aspects of oxidation of alcohols and transfer hydrogenation. However, no such article is available in the literature on the syntheses and use of organochalcogen ligated catalysts for these two reactions. In this perspective, a survey of developments pertaining to the synthetic aspects of such organochalcogen (S/Se/Te) based catalysts for the two reactions has been made. In addition to covering the syntheses of chalcogen ligands, their metal complexes and nanoparticles (NPs), emphasis has also been placed on the efficient conversion of different substrates during catalytic reactions, diversity in catalytic potential and mechanistic aspects of catalysis. It also includes the analysis of comparison (in terms of efficiency) between this unique class of catalysts and efficient catalysts without a chalcogen donor. The future scope of this area has also been highlighted.
Collapse
Affiliation(s)
- Preeti Oswal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Aayushi Arora
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Siddhant Singh
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Divyanshu Nautiyal
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Sushil Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| | - Gyandshwar Kumar Rao
- Department of Chemistry Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248012, India.
| |
Collapse
|
11
|
Arora A, Oswal P, Rao GK, Kaushal J, Kumar S, Singh AK, Kumar A. Chalcogen (S/Se) Ligated Palladium(II) Complexes of Bulky Ligands: Application in
O
‐Arylation of Phenol. ChemistrySelect 2019. [DOI: 10.1002/slct.201901834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aayushi Arora
- Department of ChemistrySchool of Physical SciencesDoon University Dehradun 248012, Uttarakhand India
| | - Preeti Oswal
- Department of ChemistrySchool of Physical SciencesDoon University Dehradun 248012, Uttarakhand India
| | - Gyandshwar K. Rao
- Department of ChemistryAmity University Haryana (AUH) Manesar, Gurgaon 122413, Haryana India
| | - Jolly Kaushal
- Department of ChemistrySchool of Physical SciencesDoon University Dehradun 248012, Uttarakhand India
| | - Sushil Kumar
- Department of ChemistrySchool of Physical SciencesDoon University Dehradun 248012, Uttarakhand India
| | - Ajai K. Singh
- Department of ChemistryIndian Institute of Technology Delhi 110016, New Delhi India
| | - Arun Kumar
- Department of ChemistrySchool of Physical SciencesDoon University Dehradun 248012, Uttarakhand India
| |
Collapse
|
12
|
Zhou Z, Cao G, Liu N. Salicylaldehyde-stabilized Palladium Nanoparticles for Highly Efficient Suzuki-Miyaura Reaction at Room Temperature. CHEM LETT 2019. [DOI: 10.1246/cl.190051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhen Zhou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan, Guangdong 528458, P. R. China
| | - Gao Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan, Guangdong 528458, P. R. China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, P. R. China
- Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan, Guangdong 528458, P. R. China
| |
Collapse
|
13
|
Progress in selenium based metal-organic precursors for main group and transition metal selenide thin films and nanomaterials. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Wang Y, Yang ZD, Pei L, Pan P, Yu H, Sun C, Jiang Y, Gao S, Zhang G, Hu Y. Transport properties and photoresponse of a series of 2D transition metal dichalcogenide intercalation compounds. NEW J CHEM 2019. [DOI: 10.1039/c9nj00673g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The conductivity and photogalvanic effect have been shown to respond oppositely in the 2D transition metal dichalcogenide intercalation compounds PdCl2/PtCl2@MX2(A/Z).
Collapse
|
15
|
Klauke K, Gruber I, Knedel TO, Schmolke L, Barthel J, Breitzke H, Buntkowsky G, Janiak C. Silver, Gold, Palladium, and Platinum N-heterocyclic Carbene Complexes Containing a Selenoether-Functionalized Imidazol-2-ylidene Moiety. Organometallics 2018. [DOI: 10.1021/acs.organomet.7b00678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Karsten Klauke
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Irina Gruber
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Tim-Oliver Knedel
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Laura Schmolke
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Juri Barthel
- Gemeinschaftslabor für Elektronenmikroskopie RWTH-Aachen, Ernst-Ruska-Centrum für Mikroskopie und Spektroskopie mit
Elektronen, D-52425 Jülich, Germany
| | - Hergen Breitzke
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Chaudhari KR, Paluru DK, Wadawale AP, Dey S. Allylpalladium complexes of pyridylselenolates as precursors for palladium selenides. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|