1
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
2
|
Swann R, Slikboer S, Genady A, Silva LR, Janzen N, Faraday A, Valliant JF, Sadeghi S. Tetrazine-Derived Near-Infrared Dye for Targeted Photoacoustic Imaging of Bone. J Med Chem 2023; 66:6025-6036. [PMID: 37129217 DOI: 10.1021/acs.jmedchem.2c01685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A near-infrared photoacoustic probe was used to image bone in vivo through active and bioorthogonal pretargeting strategies that utilized coupling between a tetrazine-derived cyanine dye and a trans-cyclooctene-modified bisphosphonate. In vitro hydroxyapatite binding of the probe via active and pretargeting strategies showed comparable increases in percent binding vs a nontargeted control. Intrafemoral injection of the bisphosphonate-dye conjugate showed retention out to 24 h post-injection, with a 14-fold increase in signal over background, while the nontargeted dye exhibited negligible binding to bone and signal washout by 4 h post-injection. Intravenous injection, using both active and pretargeting strategies, demonstrated bone accumulation as earlier as 4 h post-injection, where the signal was found to be 3.6- and 1.5-fold higher, respectively, than the signal from the nontargeted dye. The described bone-targeted dye enabled in vivo photoacoustic imaging, while the synthetic strategy provides a convenient building block for developing new targeted photoacoustic probes.
Collapse
Affiliation(s)
- Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Samantha Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Afaf Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Luis Rafael Silva
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Amber Faraday
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
3
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Fischer NH, Lopes van den Broek SI, Herth MM, Diness F. Radiolabeled albumin through S NAr of cysteines as a potential pretargeting theranostic agent. RSC Adv 2022; 12:35032-35036. [DOI: 10.1039/d2ra06406e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Human serum albumin has been functionalized with a radionuclide by combining SNAr conjugation to Cys34 with CuAAC and inverse-electron demand Diels–Alder reactions demonstrating a promising strategy for generating theranostics by bioconjugation.
Collapse
Affiliation(s)
- Niklas H. Fischer
- Department of Chemistry, Faculty of Science, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
- Department of Science and Environment, Roskilde University, Universitetsparken 1, Roskilde 4000, Denmark
| | - Sara I. Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, Copenhagen 2100, Denmark
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, Copenhagen 2100, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Frederik Diness
- Department of Chemistry, Faculty of Science, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
- Department of Science and Environment, Roskilde University, Universitetsparken 1, Roskilde 4000, Denmark
| |
Collapse
|
5
|
D'Onofrio A, Silva F, Gano L, Karczmarczyk U, Mikołajczak R, Garnuszek P, Paulo A. Clickable Radiocomplexes With Trivalent Radiometals for Cancer Theranostics: In vitro and in vivo Studies. Front Med (Lausanne) 2021; 8:647379. [PMID: 34179038 PMCID: PMC8225959 DOI: 10.3389/fmed.2021.647379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Pre-targeting approaches based on the inverse-electron-demand Diels-Alder (iEDDA) reaction between strained trans-cyclooctenes (TCO) and electron-deficient tetrazines (Tz) have emerged in recent years as valid alternatives to classic targeted strategies to improve the diagnostic and therapeutic properties of radioactive probes. To explore these pre-targeting strategies based on in vivo click chemistry, a small family of clickable chelators was synthesized and radiolabelled with medically relevant trivalent radiometals. The structure of the clickable chelators was diversified to modulate the pharmacokinetics of the resulting [111In]In-radiocomplexes, as assessed upon injection in healthy mice. The derivative DOTA-Tz was chosen to pursue the studies upon radiolabelling with 90Y, yielding a radiocomplex with high specific activity, high radiochemical yields and suitable in vitro stability. The [90Y]Y-DOTA-Tz complex was evaluated in a prostate cancer PC3 xenograft by ex-vivo biodistribution studies and Cerenkov luminescence imaging (CLI). The results highlighted a quick elimination through the renal system and no relevant accumulation in non-target organs or non-specific tumor uptake. Furthermore, a clickable bombesin antagonist was injected in PC3 tumor-bearing mice followed by the radiocomplex [90Y]Y-DOTA-Tz, and the mice imaged by CLI at different post-injection times (p.i.). Analysis of the images 15 min and 1 h p.i. pointed out an encouraging quick tumor uptake with a fast washout, providing a preliminary proof of concept of the usefulness of the designed clickable complexes for pre-targeting strategies. To the best of our knowledge, the use of peptide antagonists for this purpose was not explored before. Further investigations are needed to optimize the pre-targeting approach based on this type of biomolecules and evaluate its eventual advantages.
Collapse
Affiliation(s)
- Alice D'Onofrio
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Lisbon, Portugal
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Lisbon, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Lisbon, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Urszula Karczmarczyk
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock, Poland
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock, Poland
| | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock, Poland
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Lisbon, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Shahzad K, Majid ASA, Khan M, Iqbal MA, Ali A. Recent advances in the synthesis of (99mTechnetium) based radio-pharmaceuticals. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Technetium radionuclide (99mTc) has excellent extent of disintegration properties and occupies a special place in the field of nuclear medicinal chemistry and other health disciplines. Current review describes recent approaches of synthesis in detailed ways for radio-pharmaceuticals of technetium which have been developed to treat and diagnose the biotic disorders. These technetium labeled radio-pharmaceuticals have been established to apply in the field of diagnostic nuclear medicine especially for imaging of different body parts such as brain, heart, kidney, bones and so on, through single photon emission computed tomography (SPECT) that is thought to be difficult to image such organs by using common X-ray and MRI (Magnetic Resonance Imaging) techniques. This review highlights and accounts an inclusive study on the various synthetic routes of technetium labeled radio-pharmaceuticals using ligands with various donor atoms such as carbon, nitrogen, sulphur, phosphorus etc. These compounds can be utilized as next generation radio-pharmaceuticals.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | | | - Mumtaz Khan
- Health Physics Division, Pakistan Institute of Nuclear Science and Technology , Islamabad , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Asjad Ali
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
7
|
Slikboer SR, Pitchumony TS, Banevicius L, Mercanti N, Edem PE, Valliant JF. Imidazole fused phenanthroline (PIP) ligands for the preparation of multimodal Re(I) and 99mTc(I) probes. Dalton Trans 2020; 49:14826-14836. [PMID: 33034336 DOI: 10.1039/d0dt02829k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A small library of [2 + 1] 99mTc(i) complexes based on phenyl-imidazole-fused phenanthroline (PIP) ligands were synthesized and evaluated as multimodal molecular imaging probes. Using either a two-step or a one-pot synthesis method, 99mTc-PIP complexes containing N-methylimidazole as the monodentate ligand were prepared and isolated in good (54 to 89%) radiochemical yield, with the exception of one derivative bearing a strongly electron-withdrawing substituent. The stability of the [2 + 1] complexes was assessed in saline and in cysteine and histidine challenge studies, showing 6 hours stability, making them suitable for in vivo studies. In parallel, the Re(i) analogues were prepared as reference standards to verify the structure of the 99mTc complexes. The optical properties were consistent with other previously reported [2 + 1] type Re(i) complexes that have been used as cellular dyes and sensors. To facilitate the development of targeted derivatives, a tetrazine-PIP ligand was also synthesized. The 99mTc complex of the tetrazine PIP ligand effectively coupled to compounds containing a trans-cyclooctene (TCO) group including a TCO-albumin derivative, which was prepared as a model targeting molecule. An added benefit of the Re-PIP-Tz construct is that the emission from the metal complex was quenched by the presence of the tetrazine. Following the addition of TCO, there was a 70-fold increase in fluorescence emission, which can in future be leveraged during in vitro studies to reduce background signal.
Collapse
Affiliation(s)
- Samantha R Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4 M1, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Slikboer S, Naperstkow Z, Janzen N, Faraday A, Soenjaya Y, Le Floc'h J, Al-Karmi S, Swann R, Wyszatko K, Demore CEM, Foster S, Valliant JF. Tetrazine-Derived Near-Infrared Dye as a Facile Reagent for Developing Targeted Photoacoustic Imaging Agents. Mol Pharm 2020; 17:3369-3377. [PMID: 32697098 DOI: 10.1021/acs.molpharmaceut.0c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new photoacoustic (PA) dye was developed as a simple-to-use reagent for creating targeted PA imaging agents. The lead molecule was prepared via an efficient two-step synthesis from an inexpensive commercially available starting material. With the dye's innate albumin-binding properties, the resulting tetrazine-derived dye is capable of localizing to tumor and exhibits a biological half-life of a few hours, allowing for an optimized distribution profile. The presence of tetrazine in turn makes it possible to link the albumin-binding optoacoustic signaling agent to a wide range of targeting molecules. To demonstrate the utility and ease of use of the platform, a novel PA probe for imaging calcium accretion was generated using a single-step bioorthogonal coupling reaction where high-resolution PA images of the knee joint in mice were obtained as early as 1 h post injection. Whole-body distribution was subsequently determined by labeling the probe with 99mTc and performing tissue counting following necropsy. These studies, along with tumor imaging and in vitro albumin binding studies, revealed that the core PA contrast agent can be imaged in vivo and can be easily linked to targeting molecules for organ-specific uptake.
Collapse
Affiliation(s)
- Samantha Slikboer
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Zoya Naperstkow
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Amber Faraday
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Yohannes Soenjaya
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Johann Le Floc'h
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Salma Al-Karmi
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Rowan Swann
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Kevin Wyszatko
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| | - Christine E M Demore
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Stuart Foster
- Department of Medical Biophysics University of Toronto, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
9
|
Edem PE, Jørgensen JT, Nørregaard K, Rossin R, Yazdani A, Valliant JF, Robillard M, Herth MM, Kjaer A. Evaluation of a 68Ga-Labeled DOTA-Tetrazine as a PET Alternative to 111In-SPECT Pretargeted Imaging. Molecules 2020; 25:molecules25030463. [PMID: 31979070 PMCID: PMC7036891 DOI: 10.3390/molecules25030463] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/22/2023] Open
Abstract
The bioorthogonal reaction between a tetrazine and strained trans-cyclooctene (TCO) has garnered success in pretargeted imaging. This reaction was first validated in nuclear imaging using an 111In-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-linked bispyridyl tetrazine (Tz) ([111In]In-DOTA-PEG11-Tz) and a TCO functionalized CC49 antibody. Given the initial success of this Tz, it has been paired with TCO functionalized small molecules, diabodies, and affibodies for in vivo pretargeted studies. Furthermore, the single photon emission tomography (SPECT) radionuclide, 111In, has been replaced with the β-emitter, 177Lu and α-emitter, 212Pb, both yielding the opportunity for targeted radiotherapy. Despite use of the ‘universal chelator’, DOTA, there is yet to be an analogue suitable for positron emission tomography (PET) using a widely available radionuclide. Here, a 68Ga-labeled variant ([68Ga]Ga-DOTA-PEG11-Tz) was developed and evaluated using two different in vivo pretargeting systems (Aln-TCO and TCO-CC49). Small animal imaging and ex vivo biodistribution studies were performed and revealed target specific uptake of [68Ga]Ga-DOTA-PEG11-Tz in the bone (3.7 %ID/g, knee) in mice pretreated with Aln-TCO and tumor specific uptake (5.8 %ID/g) with TCO-CC49 in mice bearing LS174 xenografts. Given the results of this study, [68Ga]Ga-DOTA-PEG11-Tz can serve as an alternative to [111In]In-DOTA-PEG11-Tz.
Collapse
Affiliation(s)
- Patricia E. Edem
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Rafaella Rossin
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (R.R.); (M.R.)
| | - Abdolreza Yazdani
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4M1, Canada; (A.Y.); (J.F.V.)
- Pharmaceutical Chemistry and Radiopharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box 14155–6153, Tehran, Iran
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St West, Hamilton, ON L8S 4M1, Canada; (A.Y.); (J.F.V.)
| | - Marc Robillard
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands; (R.R.); (M.R.)
| | - Matthias M. Herth
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (P.E.E.); (J.T.J.); (K.N.)
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.)
| |
Collapse
|
10
|
Edem PE, Sinnes JP, Pektor S, Bausbacher N, Rossin R, Yazdani A, Miederer M, Kjær A, Valliant JF, Robillard MS, Rösch F, Herth MM. Evaluation of the inverse electron demand Diels-Alder reaction in rats using a scandium-44-labelled tetrazine for pretargeted PET imaging. EJNMMI Res 2019; 9:49. [PMID: 31140047 PMCID: PMC6538705 DOI: 10.1186/s13550-019-0520-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pretargeted imaging allows the use of short-lived radionuclides when imaging the accumulation of slow clearing targeting agents such as antibodies. The biotin-(strept)avidin and the bispecific antibody-hapten interactions have been applied in clinical pretargeting studies; unfortunately, these systems led to immunogenic responses in patients. The inverse electron demand Diels-Alder (IEDDA) reaction between a radiolabelled tetrazine (Tz) and a trans-cyclooctene (TCO)-functionalized targeting vector is a promising alternative for clinical pretargeted imaging due to its fast reaction kinetics. This strategy was first applied in nuclear medicine using an 111In-labelled Tz to image TCO-functionalized antibodies in tumour-bearing mice. Since then, the IEDDA has been used extensively in pretargeted nuclear imaging and radiotherapy; however, these studies have only been performed in mice. Herein, we report the 44Sc labelling of a Tz and evaluate it in pretargeted imaging in Wistar rats. RESULTS 44Sc was obtained from an in house 44Ti/44Sc generator. A 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-functionalized tetrazine was radiolabelled with 44Sc resulting in radiochemical yields of 85-95%, a radiochemical purity > 99% at an apparent molar activity of 1 GBq/mmol. The 44Sc-labelled Tz maintained stability in solution for up to 24 h. A TCO-functionalized bisphosphonate, which accumulates in skeletal tissue, was used as a targeting vector to evaluate the 44Sc-labelled Tz. Biodistribution data of the 44Sc-labelled Tz showed specific uptake (0.9 ± 0.3% ID/g) in the bones (humerus and femur) of rats pre-treated with the TCO-functionalized bisphosphonate. This uptake was not present in rats not receiving pre-treatment (< 0.03% ID/g). CONCLUSIONS We have prepared a 44Sc-labelled Tz and used it in pretargeted PET imaging with rats treated with TCO-functionalized bisphosponates. This allowed for the evaluation of the IEDDA reaction in animals larger than a typical mouse. Non-target accumulation was low, and there was a 30-fold higher bone uptake in the pre-treated rats compared to the non-treated controls. Given its convenient half-life and the ability to perform positron emission tomography with a previously studied DOTA-functionalized Tz, scandium-44 (t1/2 = 3.97 h) proved to be a suitable radioisotope for this study.
Collapse
Affiliation(s)
- Patricia E Edem
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | | | - Stefanie Pektor
- University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Nicole Bausbacher
- University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Abdolreza Yazdani
- McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4L8, Canada.,Pharmaceutical Chemistry and Radiopharmacy Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, PO Box 14155-6153, Tehran, Iran
| | - Matthias Miederer
- University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - John F Valliant
- McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4L8, Canada
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Frank Rösch
- Johannes Gutenberg-Universität Mainz, Saarstraße 21, 55122, Mainz, Germany
| | - Matthias M Herth
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark. .,Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark.
| |
Collapse
|
11
|
Zhou Z, Devoogdt N, Zalutsky MR, Vaidyanathan G. An Efficient Method for Labeling Single Domain Antibody Fragments with 18F Using Tetrazine- Trans-Cyclooctene Ligation and a Renal Brush Border Enzyme-Cleavable Linker. Bioconjug Chem 2018; 29:4090-4103. [PMID: 30384599 DOI: 10.1021/acs.bioconjchem.8b00699] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Single domain antibody fragments (sdAbs) labeled with 18F have shown promise for assessing the status of oncological targets such as the human epidermal growth factor receptor 2 (HER2) by positron emission tomography (PET). Earlier, we evaluated two residualizing prosthetic agents for 18F-labeling of anti-HER2 sdAbs; however, these methods resulted in poor labeling yields and high uptake of 18F activity in the kidneys. To potentially mitigate these limitations, we have now developed an 18F labeling method that utilizes the trans-cyclooctene (TCO)-tetrazine (Tz)-based inverse-electron demand Diels-Alder reaction (IEDDAR) in tandem with a renal brush border enzyme-cleavable glycine-lysine (GK) linker in the prosthetic moiety. The HER2-targeted sdAb 2Rs15d was derivatized with TCO-GK-PEG4-NHS or TCO-PEG4-NHS, which lacks the cleavable linker. As an additional control, the non HER2-specific sdAb R3B23 was derivatized with TCO-GK-PEG4-NHS. The resultant sdAb conjugates were labeled with 18F by IEDDAR using [18F]AlF-NOTA-PEG4-methyltetrazine. As a positive control, the 2Rs15d sdAb was radioiodinated using the well-characterized residualizing prosthetic agent, N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB). Synthesis of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d was achieved with an overall radiochemical yield (RCY) of 17.8 ± 1.5% ( n = 5) in 90 min, a significant improvement over prior methods (3-4% in 2-3 h). In vitro assays indicated that [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d bound with high affinity and immunoreactivity to HER2. In normal mice, when normalized to coinjected [125I]SGMIB-2Rs15d, the kidney uptake of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d was 15- and 28-fold lower ( P < 0.001) than that seen for the noncleavable control ([18F]AlF-NOTA-Tz-TCO-2Rs15d) at 1 and 3 h, respectively. Uptake of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d in HER2-expressing SKOV-3 ovarian carcinoma xenografts implanted in athymic mice was about 80% of that seen for coinjected [125I]SGMIB-2Rs15d. On the other hand, kidney uptake was 5-6-fold lower, and as a result, tumor-to-kidney ratios were 4-fold higher for [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d than those for [125I]SGMIB-2Rs15d. SKOV-3 xenografts were clearly delineated even at 1 h after administration of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d by Micro-PET/CT imaging with even higher contrast observed thereafter. In conclusion, this strategy warrants further evaluation for labeling small proteins such as sdAbs because it offers the benefits of good radiochemical yields and enhanced tumor-to-normal tissue ratios, particularly in the kidney.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging laboratory , Vrije Universiteit Brussel , 1090 , Brussels , Belgium
| | - Michael R Zalutsky
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Ganesan Vaidyanathan
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| |
Collapse
|
12
|
Mandikian D, Rafidi H, Adhikari P, Venkatraman P, Nazarova L, Fung G, Figueroa I, Ferl GZ, Ulufatu S, Ho J, McCaughey C, Lau J, Yu SF, Prabhu S, Sadowsky J, Boswell CA. Site-specific conjugation allows modulation of click reaction stoichiometry for pretargeted SPECT imaging. MAbs 2018; 10:1269-1280. [PMID: 30199303 PMCID: PMC6284555 DOI: 10.1080/19420862.2018.1521132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibody pretargeting is a promising strategy for improving molecular imaging, wherein the separation in time of antibody targeting and radiolabeling can lead to rapid attainment of high contrast, potentially increased sensitivity, and reduced patient radiation exposure. The inverse electron demand Diels-Alder ‘click’ reaction between trans-cyclooctene (TCO) conjugated antibodies and radiolabeled tetrazines presents an ideal platform for pretargeted imaging due to rapid reaction kinetics, bioorthogonality, and potential for optimization of both slow and fast clearing components. Herein, we evaluated a series of anti-human epidermal growth factor receptor 2 (HER2) pretargeting antibodies containing distinct molar ratios of site-specifically incorporated TCO. The effect of stoichiometry on tissue distribution was assessed for pretargeting TCO-modified antibodies (monitored by 125I) and subsequent accumulation of an 111In-labeled tetrazine in a therapeutically relevant HER2+tumor-bearing mouse model. Single photon emission computed tomography (SPECT) imaging was also employed to assess tumor imaging at various TCO-to-monoclonal antibody (mAb) ratios. Increasing TCO-to-mAb molar ratios correlated with increased in vivo click reaction efficiency evident by increased tumor distribution and systemic exposure of 111In-labeled tetrazines. The pharmacokinetics of TCO-modified antibodies did not vary with stoichiometry. Pretargeted SPECT imaging of HER2-expressing tumors using 111In-labeled tetrazine demonstrated robust click reaction with circulating antibody at ~2 hours and good tumor delineation for both the 2 and 6 TCO-to-mAb ratio variants at 24 hours, consistent with a limited cell-surface pool of pretargeted antibody and benefit from further distribution and internalization. To our knowledge, this represents the first reported systematic analysis of how pretargeted imaging is affected solely by variation in click reaction stoichiometry through site-specific conjugation chemistry.
Collapse
Affiliation(s)
- Danielle Mandikian
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Hanine Rafidi
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Pragya Adhikari
- b Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - Priya Venkatraman
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Lidia Nazarova
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Gabriel Fung
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Isabel Figueroa
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Gregory Z Ferl
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Sheila Ulufatu
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Jason Ho
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Cynthia McCaughey
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Jeffrey Lau
- d Translational Oncology , Genentech Inc ., South San Francisco , CA , USA
| | - Shang-Fan Yu
- d Translational Oncology , Genentech Inc ., South San Francisco , CA , USA
| | - Saileta Prabhu
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Jack Sadowsky
- b Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - C Andrew Boswell
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| |
Collapse
|
13
|
García MF, Gallazzi F, Junqueira MDS, Fernández M, Camacho X, Mororó JDS, Faria D, Carneiro CDG, Couto M, Carrión F, Pritsch O, Chammas R, Quinn T, Cabral P, Cerecetto H. Synthesis of hydrophilic HYNIC-[1,2,4,5]tetrazine conjugates and their use in antibody pretargeting with99mTc. Org Biomol Chem 2018; 16:5275-5285. [DOI: 10.1039/c8ob01255e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pretargeted imaging is shown to be an attractive strategy to overcome disadvantages associated with traditional radioimmunoconjugates.
Collapse
|