1
|
Fan X, Wang H, Gu J, Lv D, Zhang B, Xue J, Kirillova MV, Kirillov AM. Coordination Polymers from an Amino-Functionalized Terphenyl-Tetracarboxylate Linker: Structural Multiplicity and Catalytic Properties. Inorg Chem 2023; 62:17612-17624. [PMID: 37847556 DOI: 10.1021/acs.inorgchem.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An amino-functionalized terphenyl-tetracarboxylic acid, 2'-amino-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid (H4tpta), was used as an adaptable linker to synthesize, under hydrothermal conditions, eight coordination polymers (CPs). The obtained products were formulated as [Co(μ6-H2tpta)]n (1), [Co(μ3-H2tpta)(2,2'-bipy)]n (2), [M3(μ6-Htpta)2(2,2'-bipy)2]n (M = Mn (3), Cd (4)), [Ni2(μ4-tpta)(phen)2(H2O)4]n (5), [Zn2(μ6-tpta)(phen)2]n (6), {[Zn2(μ6-tpta)(μ-4,4'-bipy)]·H2O}n (7), and [Zn2(μ6-tpta)(μ-H2biim)(H2O)2]n (8), wherein 2,2'-bipyridine (2,2'-bipy), 4,4'-bipyridine (4,4'-bipy), 1,10-phenanthroline (phen), or 2,2'-biimidazole (H2biim) are present as additional stabilizing ligands. The structural types of 1-8 vary from one-dimensional (1D) (2, 5) and two-dimensional (2D) (3, 4, 6) CPs to three-dimensional (3D) metal-organic frameworks (MOFs) (1, 7, and 8) with a diversity of topologies. The products 1-8 were investigated as catalysts in the Knoevenagel condensation involving aldehydes and active methylene derivatives (malononitrile, ethyl cyanoacetate, or tert-butyl cyanoacetate), leading to high condensation product yields (up to 99%) under optimized conditions. Various reaction conditions, substrate scope, and catalyst recycling were investigated. This work broadens the application of H4tpta as a versatile tetracarboxylate linker for the generation of diverse CPs/MOFs.
Collapse
Affiliation(s)
- Xiaoxiang Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hongyu Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinzhong Gu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongyu Lv
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
2
|
Mohammadpour P, Safaei E, Mazarei E, Zeinalipour-Yazdi CD. TEMPO and a co-reductant mediated aerobic epoxidation of olefins using a new magnetically recoverable iron(III) bis(phenol)diamine complex: experimental and computational studies. Phys Chem Chem Phys 2023; 25:26588-26603. [PMID: 37753780 DOI: 10.1039/d3cp02254d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A magnetically recoverable catalyst of an iron(III) bis(phenol) diamine complex immobilized onto amine functionalized silica-coated magnetic nanoparticles has been synthesized. The catalyst was characterized using FESEM, TEM and XRD which confirmed the nano structure of the catalyst. The physicochemical techniques of ICP, FT-IR, XPS, EDS and TGA proved the loading of the ligand and metal complex on silica-coated magnetic nanoparticles. Using the prepared heterogeneous catalyst, aerobic epoxidation reactions of different alkenes have been investigated in the presence of SO32- as a reducing agent. Moreover, using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to discover the mechanism of the aerobic epoxidation of olefins, a new TEMPO-assisted route has been explored. Both of the reaction pathways led to a moderate to high percentage yield of epoxides in water at room temperature. For further understanding mechanistic aspects, density functional theory (DFT) computational studies have been performed. The DFT calculations confirm the suggested mechanism for the title reaction and show the electron density in the vicinity of Fe(II) in the presence of TEMPO as a co-catalyst was more than that in the presence of SO32-.
Collapse
Affiliation(s)
- Pegah Mohammadpour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - Elham Mazarei
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | |
Collapse
|
3
|
Fan XX, Wang HY, Zhang B, Kang XQ, Gu JZ, Xue JJ. Six metal-organic architectures from a 5-methoxyisophthalate linker: assembly, structural variety and catalytic features. RSC Adv 2023; 13:23745-23753. [PMID: 37555093 PMCID: PMC10405890 DOI: 10.1039/d3ra04111e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
A methoxy-functionalized isophthalic acid, 5-methoxy isophthalic acid (H2mia), was used a versatile linker for assembling six new metal(ii) compounds under hydrothermal conditions. The obtained products were [Cu2(μ2-mia)2(phen)2(H2O)2]·2H2O (1), [Mn(μ3-mia)(phen)]n (2), [Co(μ2-mia)(2,2'-bipy)(H2O)]n·nH2O (3), [Co(μ3-mia)(μ2-4,4'-bipy)]n·nH2O (4), [Co(μ3-mia)(py)2]n (5), and [Cd(μ2-mia)(py)(H2O)2]n·nH2O (6), where phen(1,10-phenanthroline), 2,2'-bipy(2,2'-bipyridine), 4,4'-bipy(4,4'-bipyridine) or py(pyridine) were incorporated as auxiliary ligands. The crystal structures of 1-6 range from 0D (1) and 1D (2, 3, 5, 6) CPs to a 2D network (4) with a variety of topological types. The catalytic behavior of 1-6 was studied in the cyanosilylation reaction between trimethylsilyl cyanide and aldehydes, resulting in up to 99% yields of products under optimized conditions. Various reaction parameters as well as catalyst recycling and substrate scope were investigated. This study widens the use of H2mia as a versatile dicarboxylate linker for assembling a diversity of functional metal-organic architectures with remarkable structural features and catalytic properties.
Collapse
Affiliation(s)
- Xiao-Xiang Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Hong-Yu Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xiu-Qi Kang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jin-Zhong Gu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Ji-Jun Xue
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
4
|
Cheng X, Guo L, Wang H, Gu J, Yang Y, Kirillova MV, Kirillov AM. Coordination Polymers Constructed from an Adaptable Pyridine-Dicarboxylic Acid Linker: Assembly, Diversity of Structures, and Catalysis. Inorg Chem 2022; 61:17951-17962. [PMID: 36318516 PMCID: PMC9775464 DOI: 10.1021/acs.inorgchem.2c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 11/16/2022]
Abstract
4,4'-(Pyridine-3,5-diyl)dibenzoic acid (H2pdba) was explored as an adaptable linker for assembling a diversity of new manganese(II), cobalt(II/III), nickel(II), and copper(II) coordination polymers (CPs): [Mn(μ4-pdba)(H2O)]n (1), {[M(μ3-pdba)(phen)]·2H2O}n (M = Co (2), Ni (3)), {[Cu2(μ3-pdba)2(bipy)]·2H2O}n (4), {[Co(μ3-pdba)(bipy)]·2H2O}n (5), [Co2(μ3-pdba)(μ-Hbiim)2(Hbiim)]n (6), and [M(μ4-pdba)(py)]n (M = Co (7), Ni (8)). The CPs were hydrothermally synthesized using metal(II) chloride precursors, H2pdba, and different coligands functioning as crystallization mediators (phen: 1,10-phenanthroline; bipy: 2,2'-bipyridine, H2biim: 2,2'-biimidazole; py: pyridine). Structural networks of 1-8 range from two-dimensional (2D) metal-organic layers (1-3, 5-8) to three-dimensional (3D) metal-organic framework (MOF) (4) and disclose several types of topologies: sql (in 1), hcb (in 2, 3, 5), tfk (in 4), 3,5L66 (in 6), and SP 2-periodic net (6,3)Ia (in 7, 8). Apart from the characterization by standard methods, catalytic potential of the obtained CPs was also screened in the Knoevenagel condensation of benzaldehyde with propanedinitrile to give 2-benzylidenemalononitrile (model reaction). Several reaction parameters were optimized, and the substrate scope was explored, revealing the best catalytic performance for a 3D MOF 4. This catalyst is recyclable and can lead to substituted dinitrile products in up to 99% product yields. The present study widens the use of H2pdba as a still poorly studied linker toward designing novel functional coordination polymers.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Lirong Guo
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Hongyu Wang
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Jinzhong Gu
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Ying Yang
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, People’s Republic
of China
| | - Marina V. Kirillova
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001 Lisbon, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001 Lisbon, Portugal
| |
Collapse
|
5
|
Ranjan R, Kundu BK, Kyarikwal R, Ganguly R, Mukhopadhyay S. Synthesis of Cu(II) complexes by N,O‐donor ligand transformation and their catalytic role in visible‐light‐driven alcohol oxidation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Ranjan
- Department of Chemistry, School of Basic Sciences Indian Institute of Technology Indore Indore India
| | - Bidyut Kumar Kundu
- Department of Chemistry, School of Applied Science Centurion University of Technology and Management Bhubaneswar India
| | - Reena Kyarikwal
- Department of Chemistry, School of Basic Sciences Indian Institute of Technology Indore Indore India
| | - Rakesh Ganguly
- Department of Chemistry Shiv Nadar University Greater Noida India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences Indian Institute of Technology Indore Indore India
- Department of Biosciences and Biomedical Engineering, School of Engineering Indian Institute of Technology Indore Indore India
| |
Collapse
|
6
|
Barma A, Bhattacharjee A, Roy P. Dinuclear Copper(II) Complexes with N,O Donor Ligands: Partial Ligand Hydrolysis and Alcohol Oxidation Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arpita Barma
- Department of Chemistry Jadavpur University Jadavpur Kolkata 700 032 India
| | | | - Partha Roy
- Department of Chemistry Jadavpur University Jadavpur Kolkata 700 032 India
| |
Collapse
|
7
|
Ma R, Xiao Z, Zhong W, Lu C, Shen Z, Zhao D, Liu X. The superiority of cuprous chloride to iodide in the selective aerobic oxidation of benzylic alcohols at ambient temperature. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ruonan Ma
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
- School of Chemistry Nanchang University Nanchang China
| | - Zhiyin Xiao
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Wei Zhong
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Zhongquan Shen
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Dan Zhao
- School of Chemistry Nanchang University Nanchang China
| | - Xiaoming Liu
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
- School of Chemistry Nanchang University Nanchang China
| |
Collapse
|
8
|
Farahmand S, Ghiaci M, Asghari S. Oxo-vanadium (IV) phthalocyanine implanted onto the modified SBA-15 as a catalyst for direct hydroxylation of benzene to phenol in acetonitrile-water medium: A kinetic study. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Ribeiro N, Bulut I, Cevatemre B, Teixeira C, Yildizhan Y, André V, Adão P, Pessoa JC, Acilan C, Correia I. Cu(ii) and V(iv)O complexes with tri- or tetradentate ligands based on (2-hydroxybenzyl)-l-alanines reveal promising anticancer therapeutic potential. Dalton Trans 2021; 50:157-169. [DOI: 10.1039/d0dt03331f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
New CuII- and VIVO amino acid complexes show antiproliferative activity mediated by apoptosis and genomic damage.
Collapse
Affiliation(s)
- Nádia Ribeiro
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- 1049-001 Lisboa
- Portugal
| | - Ipek Bulut
- Koç University
- Graduate School of Health Sciences
- Sariyer, 34450
- Turkey
| | - Buse Cevatemre
- Koç University Research Center for Translational Medicine (KUTTAM)
- Sariyer 34450
- Turkey
| | - Carlos Teixeira
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- 1049-001 Lisboa
- Portugal
| | - Yasemin Yildizhan
- TUBITAK
- Marmara Research Center
- Genetic Engineering and Biotechnology Institute
- Kocaeli
- Turkey
| | - Vânia André
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- 1049-001 Lisboa
- Portugal
| | - Pedro Adão
- MARE - Centro de Ciências do Mar e do Ambiente
- Politécnico de Leiria
- 2520-630 Peniche
- Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- 1049-001 Lisboa
- Portugal
| | - Ceyda Acilan
- Koç University Research Center for Translational Medicine (KUTTAM)
- Sariyer 34450
- Turkey
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
10
|
Senthilkumar S, Zhong W, Natarajan M, Lu C, Xu B, Liu X. A green approach for aerobic oxidation of benzylic alcohols catalysed by Cu I–Y zeolite/TEMPO in ethanol without additional additives. NEW J CHEM 2021. [DOI: 10.1039/d0nj03776a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CuI–Y zeolite catalysts, which are robust and recyclable, assisted by TEMPO catalyses quantitatively the aerobic oxidation of a wide range of benzylic alcohols into aldehydes in ethanol under mild conditions without additional additives.
Collapse
Affiliation(s)
| | - Wei Zhong
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- P. R. China
| | - Mookan Natarajan
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- P. R. China
| | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- P. R. China
| | - Binyu Xu
- School of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Xiaoming Liu
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- P. R. China
| |
Collapse
|
11
|
Zhang HR, Gu JZ, Kirillova MV, Kirillov AM. Metal–organic architectures designed from a triphenyl-pentacarboxylate linker: hydrothermal assembly, structural multiplicity, and catalytic Knoevenagel condensation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00680k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eight new metal(ii) coordination compounds driven by a triphenyl-pentacarboxylate linker were hydrothermally assembled and fully characterized. Their structural features and catalytic behavior were investigated.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Zhong Gu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Marina V. Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M. Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st, Moscow, 117198, Russian Federation
| |
Collapse
|
12
|
Singh A, Maji A, Mohanty A, Ghosh K. Copper-based catalysts derived from salen-type ligands: synthesis of 5-substituted-1 H-tetrazoles via [3+2] cycloaddition and propargylamines via A 3-coupling reactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03081c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Base-metal copper(ii) complexes derived from unsymmetrical salen-type ligands were designed and synthesized using ligands L1H to L4H. These complexes were employed as catalysts for [3+2] cycloaddition and A3-coupling reactions.
Collapse
Affiliation(s)
- Anshu Singh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Ankur Maji
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Aurobinda Mohanty
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Kaushik Ghosh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| |
Collapse
|
13
|
Xu B, Senthilkumar S, Zhong W, Shen Z, Lu C, Liu X. Magnetic core–shell Fe3O4@Cu2O and Fe3O4@Cu2O–Cu materials as catalysts for aerobic oxidation of benzylic alcohols assisted by TEMPO and N-methylimidazole. RSC Adv 2020; 10:26142-26150. [PMID: 35519734 PMCID: PMC9055318 DOI: 10.1039/d0ra04064a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
Robust core–shell magnetic materials catalyse quantitatively the aerobic oxidation of a wide range of benzylic alcohols into corresponding aldehydes at room temperature showing excellent tolerance towards the substituents on the phenyl ring.
Collapse
Affiliation(s)
- Binyu Xu
- School of Chemistry
- Nanchang University
- Nanchang
- China
| | | | - Wei Zhong
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Zhongquan Shen
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Chunxin Lu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Xiaoming Liu
- School of Chemistry
- Nanchang University
- Nanchang
- China
- College of Biological
| |
Collapse
|
14
|
Vailati AF, Huelsmann RD, Martendal E, Bortoluzzi AJ, Xavier FR, Peralta RA. Multivariate analysis applied to oxidation of cyclohexane and benzyl alcohol promoted by mononuclear iron and copper complexes. NEW J CHEM 2020. [DOI: 10.1039/c9nj05534g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The iron complex converted higher amounts of substrates while the copper complex presented higher selectivity toward selected products.
Collapse
Affiliation(s)
- Andrei F. Vailati
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| | - Ricardo D. Huelsmann
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| | - Edmar Martendal
- Departamento de Química
- Universidade do Estado de Santa Catarina
- Joinville – SC
- Brazil
| | | | - Fernando R. Xavier
- Departamento de Química
- Universidade do Estado de Santa Catarina
- Joinville – SC
- Brazil
| | - Rosely A. Peralta
- Departamento de Química
- Universidade Federal de Santa Catarina
- Florianópolis – SC
- Brazil
| |
Collapse
|
15
|
A trade-off for covalent and intercalation binding modes: a case study for Copper (II) ions and singly modified DNA nucleoside. Sci Rep 2019; 9:12602. [PMID: 31467417 PMCID: PMC6715747 DOI: 10.1038/s41598-019-48935-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/29/2019] [Indexed: 12/03/2022] Open
Abstract
Selective binding to nucleic acids and, more generally, to biopolymers, very often requires at a minimum the presence of specific functionalities and precise spatial arrangement. DNA can fold into defined 3D structures upon binding to metal centers and/or lanthanides. Binding efficiency can be boosted by modified nucleosides incorporated into DNA sequences. In this work the high selectivity of modified nucleosides towards copper (II) ions, when used in the monomeric form, is unexpectedly and drastically reduced upon being covalently attached to the DNA sequence in single-site scenario. Surprisingly, such selectivity is partially retained upon non-covalent (i.e. intercalation) mixture formed by native DNA duplex and a nucleoside in the monomeric form. Exploiting the electron spin properties of such different and rich binding mode scenarios, 1D/2D pulsed EPR experiments have been used and tailored to differentiate among the different modes. An unusual correlation of dispersion of hyperfine couplings and strength of the binding mode(s) is described.
Collapse
|
16
|
Paranawithana NN, Martins AF, Clavijo Jordan V, Zhao P, Chirayil S, Meloni G, Sherry AD. A Responsive Magnetic Resonance Imaging Contrast Agent for Detection of Excess Copper(II) in the Liver In Vivo. J Am Chem Soc 2019; 141:11009-11018. [PMID: 31268706 PMCID: PMC9991518 DOI: 10.1021/jacs.8b13493] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The design, synthesis, and properties of a new gadolinium-based copper-responsive magnetic resonance imaging (MRI) contrast agent is presented. The sensor (GdL1) has high selectivity for copper ions and exhibits a 43% increase in r1 relaxivity (20 MHz) upon binding to 1 equiv of Cu2+ in aqueous buffer. Interestingly, in the presence of physiological levels of human serum albumin (HSA), the r1 relaxivity is amplified further up to 270%. Additional spectroscopic and X-ray absorption spectroscopy (XAS) studies show that Cu2+ is coordinated by two carboxylic acid groups and the single amine group on an appended side chain of GdL1 and forms a ternary complex with HSA (GdL1-Cu2+-HSA). T1-weighted in vivo imaging demonstrates that GdL1 can detect basal, endogenous labile copper(II) ions in living mice. This offers a unique opportunity to explore the role of copper ions in the development and progression of neurological diseases such as Wilson's disease.
Collapse
Affiliation(s)
- Namini N Paranawithana
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas , United States
| | - Andre F Martins
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas , United States
| | - Veronica Clavijo Jordan
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas , United States
| | - Piyu Zhao
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas , United States
| | - Sara Chirayil
- Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas , United States
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas , United States
| | - A Dean Sherry
- Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas , United States.,Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas , United States
| |
Collapse
|
17
|
Borah BJ, Mahanta A, Mondal M, Gogoi H, Yamada Y, Bharali P. Cobalt-Copper Nanoparticles Catalyzed Selective Oxidation Reactions: Efficient Catalysis at Room Temperature. ChemistrySelect 2018. [DOI: 10.1002/slct.201801140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biraj Jyoti Borah
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784 028 India (P. Bharali
| | - Abhijit Mahanta
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784 028 India (P. Bharali
| | - Manoj Mondal
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784 028 India (P. Bharali
| | - Hemen Gogoi
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784 028 India (P. Bharali
| | - Yusuke Yamada
- Department of Applied Chemistry & Bioengineering; Graduate School of Engineering; Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku; Osaka 558-8585 Japan
| | - Pankaj Bharali
- Department of Chemical Sciences; Tezpur University, Napaam; Tezpur - 784 028 India (P. Bharali
| |
Collapse
|
18
|
Aerobic Oxidation of Alcohols Catalysed by Cu(I)/NMI/TEMPO System and Its Mechanistic Insights. Catal Letters 2018. [DOI: 10.1007/s10562-018-2485-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Jiang D, Wang Y, Li H, Yang Z, Pan S. BaBOF3: a new aurivillius-like borate containing two types of F atoms. Dalton Trans 2018; 47:5157-5160. [DOI: 10.1039/c8dt00403j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Aurivillius-like fluorine-containing borate, BaBOF3, featuring both structural characteristics of borate fluorides and fluorooxoborates has been synthesized.
Collapse
Affiliation(s)
- Dequan Jiang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Ying Wang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Hao Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments
- Xinjiang Technical Institute of Physics & Chemistry
- CAS
- Xinjiang Key Laboratory of Electronic Information Materials and Devices
- Urumqi 830011
| |
Collapse
|