1
|
Bechelany MC, Proust V, Lale A, Balestrat M, Brioude A, Gervais C, Nishihora RK, Bernard S. From design to characterization of zirconium nitride/silicon nitride nanocomposites. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
2
|
Bechelany MC, Lale A, Balestrat M, Gervais C, Malo S, Nishihora RK, Bernard S. Ceramic nanocomposites prepared via the in situ formation of a novel TiZrN2 nanophase in a polymer-derived Si3N4 matrix. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
3
|
El Chawich G, El Hayek J, Rouessac V, Cot D, Rebière B, Habchi R, Garay H, Bechelany M, Zakhour M, Miele P, Salameh C. Design and Manufacturing of Si-Based Non-Oxide Cellular Ceramic Structures through Indirect 3D Printing. MATERIALS (BASEL, SWITZERLAND) 2022; 15:471. [PMID: 35057187 PMCID: PMC8781799 DOI: 10.3390/ma15020471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/04/2022]
Abstract
Additive manufacturing of Polymer-Derived Ceramics (PDCs) is regarded as a disruptive fabrication process that includes several technologies such as light curing and ink writing. However, 3D printing based on material extrusion is still not fully explored. Here, an indirect 3D printing approach combining Fused Deposition Modeling (FDM) and replica process is demonstrated as a simple and low-cost approach to deliver complex near-net-shaped cellular Si-based non-oxide ceramic architectures while preserving the structure. 3D-Printed honeycomb polylactic acid (PLA) lattices were dip-coated with two preceramic polymers (polyvinylsilazane and allylhydridopolycarbosilane) and then converted by pyrolysis respectively into SiCN and SiC ceramics. All the steps of the process (printing resolution and surface finishing, cross-linking, dip-coating, drying and pyrolysis) were optimized and controlled. Despite some internal and surface defects observed by topography, 3D-printed materials exhibited a retention of the highly porous honeycomb shape after pyrolysis. Weight loss, volume shrinkage, roughness and microstructural evolution with high annealing temperatures are discussed. Our results show that the sacrificial mold-assisted 3D printing is a suitable rapid approach for producing customizable lightweight highly stable Si-based 3D non-oxide ceramics.
Collapse
Affiliation(s)
- Ghenwa El Chawich
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, CNRS, ENSCM, CEDEX 5, 34095 Montpellier, France; (G.E.C.); (J.E.H.); (V.R.); (D.C.); (M.B.); (P.M.)
- Laboratoire de Chimie Physique des Matériaux/Plateforme de Recherche en Nanomatériaux et Nanotechnologies (LCPM/PR2N), Lebanese University, Beirut 90656, Lebanon; (R.H.); (M.Z.)
| | - Joelle El Hayek
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, CNRS, ENSCM, CEDEX 5, 34095 Montpellier, France; (G.E.C.); (J.E.H.); (V.R.); (D.C.); (M.B.); (P.M.)
- Laboratoire de Chimie Physique des Matériaux/Plateforme de Recherche en Nanomatériaux et Nanotechnologies (LCPM/PR2N), Lebanese University, Beirut 90656, Lebanon; (R.H.); (M.Z.)
| | - Vincent Rouessac
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, CNRS, ENSCM, CEDEX 5, 34095 Montpellier, France; (G.E.C.); (J.E.H.); (V.R.); (D.C.); (M.B.); (P.M.)
| | - Didier Cot
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, CNRS, ENSCM, CEDEX 5, 34095 Montpellier, France; (G.E.C.); (J.E.H.); (V.R.); (D.C.); (M.B.); (P.M.)
| | - Bertrand Rebière
- Institut Charles Gerhardt Montpellier (ICGM), UMR 5253, University Montpellier, CNRS, ENSCM, CEDEX 5, 34095 Montpellier, France;
| | - Roland Habchi
- Laboratoire de Chimie Physique des Matériaux/Plateforme de Recherche en Nanomatériaux et Nanotechnologies (LCPM/PR2N), Lebanese University, Beirut 90656, Lebanon; (R.H.); (M.Z.)
| | - Hélène Garay
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Evironnement et les Matériaux (IPREM), IMT Mines Alès, Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64053 Pau, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, CNRS, ENSCM, CEDEX 5, 34095 Montpellier, France; (G.E.C.); (J.E.H.); (V.R.); (D.C.); (M.B.); (P.M.)
| | - Mirvat Zakhour
- Laboratoire de Chimie Physique des Matériaux/Plateforme de Recherche en Nanomatériaux et Nanotechnologies (LCPM/PR2N), Lebanese University, Beirut 90656, Lebanon; (R.H.); (M.Z.)
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, CNRS, ENSCM, CEDEX 5, 34095 Montpellier, France; (G.E.C.); (J.E.H.); (V.R.); (D.C.); (M.B.); (P.M.)
- Institut Universitaire de France, IUF, MENESR, 1 rue Descartes, CEDEX 5, 75231 Paris, France
| | - Chrystelle Salameh
- Institut Européen des Membranes, IEM, UMR 5635, University Montpellier, CNRS, ENSCM, CEDEX 5, 34095 Montpellier, France; (G.E.C.); (J.E.H.); (V.R.); (D.C.); (M.B.); (P.M.)
| |
Collapse
|
4
|
Abstract
For the past few decades, researchers have been intrigued by glassy polymers, which have applications ranging from gas separations to corrosion protection to drug delivery systems. The techniques employed to examine the sorption and diffusion of small molecules in glassy polymers are the subject of this review. Diffusion models in glassy polymers are regulated by Fickian and non-Fickian diffusion, with non-Fickian diffusion being more prevalent. The characteristics of glassy polymers are determined by sorption isotherms, and different models have been proposed in the literature to explain sorption in glassy polymers over the last few years. This review also includes the applications of glassy polymers. Despite having many applications, current researchers still have difficulty in implementing coating challenges due to issues such as physical ageing, brittleness, etc., which are briefly discussed in the review.
Collapse
|
6
|
Investigation of polymer-derived Si-(B)-C-N ceramic/reduced graphene oxide composite systems as active catalysts towards the hydrogen evolution reaction. Sci Rep 2020; 10:22003. [PMID: 33319809 PMCID: PMC7738544 DOI: 10.1038/s41598-020-78558-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022] Open
Abstract
Hydrogen Evolution Reaction (HER) is an attractive technology for chemical conversion of energy. Replacement of platinum with inexpensive and stable electrocatalysts remains a major bottleneck hampering large-scale hydrogen production by using clean and renewable energy sources. Here, we report electrocatalytically active and ultra-stable Polymer-Derived Ceramics towards HER. We successfully prepared ultrathin silicon and carbon (Si–C) based ceramic systems supported on electrically conducting 2D reduced graphene oxide (rGO) nanosheets with promising HER activity by varying the nature and the composition of the ceramic with the inclusion of nitrogen, boron and oxygen. Our results suggest that oxygen-enriched Si-B-C-N/rGO composites (O-SiBCN/rGO) display the strongest catalytic activity leading to an onset potential and a Tafel slope of − 340 mV and ~ 120 mV dec−1 respectively. O-SiBCN/rGO electrodes display stability over 170 h with minimal increase of 14% of the overpotential compared to ~ 1700% for commercial platinum nanoparticles. Our study provides new insights on the performance of ceramics as affordable and robust HER catalysts calling for further exploration of the electrocatalytic activity of such unconventional materials.
Collapse
|