1
|
Yao MX, Gao YQ, An ZW, Zhu DM. The effect of magnetic coupling along the magnetic axis on slow magnetic relaxation in Dy III complexes with D5h configuration based on an aggregation-induced-emission-active ligand. Dalton Trans 2024; 53:5133-5146. [PMID: 38380458 DOI: 10.1039/d3dt04257j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The adjustment of crystal symmetry and intramolecular magnetic coupling is of great importance for the construction of high-performance single-molecule magnets. By using an aggregation-induced-emission-active pyridine-carbohydrazone-based Schiff base ligand and phosphine oxides, four dinuclear and one one-dimensional DyIII-based complexes, [Dy2(TPE-pc)2(Bu3PO)2Cl2]·2CH3CN·2H2O (1), [Dy2(TPE-pc)2(Cy3PO)2Cl2] (2), [Dy2(TPE-pc)2(MePA)2Cl2]·2CH3OH (3), [Dy2(TPE-pc)2(Ph3PO)2Cl2]2 (4) and [Dy2(TPE-pc)2(DPPO)Cl2]n (5) (H2TPE-pc = (E)-N'-(2-hydroxy-5-(1,2,2-triphenylvinyl)benzylidene)picolinohydrazide, MePA = N-phenyl-N',N''-bis(morpholinyl) phosphoric triamide, DPPO = piperazine-1,4-diylbis(diphenyl phosphine oxide)), were isolated. All complexes are made up of an enol oxygen-bridged Dy2 unit, where DyIII ions possess a pentagonal bipyramidal geometry with pseudo D5h symmetry. Magnetic measurements reveal that intramolecular DyIII-DyIII couplings are ferromagnetic and all complexes display a significant slow magnetic relaxation phenomenon below 30 K under a zero dc field. Ab initio calculations indicate that the anisotropic magnetic axes of all DyIII ions are approximately perpendicular to the higher-order symmetric axes in all complexes, and that DyIII-DyIII magnetic couplings along the magnetic axes effectively suppress the ground state quantum tunneling effect of magnetization and promote the occurrence of slow magnetic relaxation. Raman relaxation prevails in all complexes. In addition, the H2TPE-pc ligand shows an aggregation-induced emission (AIE) effect; however, all complexes exhibit an aggregation-caused quenching (ACQ) phenomenon.
Collapse
Affiliation(s)
- Min-Xia Yao
- School of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Yu-Qi Gao
- School of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Zhong-Wu An
- School of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.
| | - Dong-Mei Zhu
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
2
|
Corredoira-Vázquez J, González-Barreira C, Fondo M, García-Deibe AM, Sanmartín-Matalobos J, Gómez-Coca S, Ruiz E, Colacio E. Dinuclear Fluoride Single-Bridged Lanthanoid Complexes as Molecule Magnets: Unprecedented Coupling Constant in a Fluoride-Bridged Gadolinium Compound. Inorg Chem 2022; 61:9946-9959. [PMID: 35737854 PMCID: PMC9275779 DOI: 10.1021/acs.inorgchem.2c00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A new synthetic method
allows isolating fluoride-bridged complexes
Bu4N{[M(3NO2,5Br-H3L1,1,4)]2(μ-F)} (M = Dy, 1; M = Ho, 2; M = Gd, 3) and Bu4N{[Dy(3Br,5Cl-H3L1,2,4)]2(μ-F)}·2H2O, 4·2H2O. The crystal structures of 1·5CH3C6H5,·2·2H2O·0.75THF, 3, and 4·2H2O·2THF show that all of them are
dinuclear compounds with linear single fluoride bridges and octacoordinated
metal centers. Magnetic susceptibility measurements in the temperature
range of 2–300 K reveal that the GdIII ions in 3 are weakly antiferromagnetically coupled, and this constitutes
the first crystallographically and magnetically analyzed gadolinium
complex with a fluoride bridge. Variable-temperature magnetization
demonstrates a poor magnetocaloric effect for 3. Alternating
current magnetic measurements for 1, 2,
and 4·2H2O bring to light that 4·2H2O is an SMM, 1 shows an
SMM-like behavior under a magnetic field of 600 Oe, while 2 does not show relaxation of the magnetization even under an applied
magnetic field. In spite of this, 2 is the first fluoride-bridged
holmium complex magnetically analyzed. DFT and ab initio calculations support the experimental magnetic results and show
that apparently small structural differences between 1 and 4·2H2O introduce important changes
in the dipolar interactions, from antiferromagnetic in 1 to ferromagnetic in 4·2H2O. Dinuclear linear fluoride single-bridged
DyIII, HoIII, and GdIII complexes
are systematically
obtained from mononuclear aquo-complexes, with the DyIII ones showing slow relaxation of the magnetization and the GdIII one revealing a weak AF coupling through the Gd−F−Gd
bridge.
Collapse
Affiliation(s)
- Julio Corredoira-Vázquez
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Cristina González-Barreira
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Matilde Fondo
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Ana M García-Deibe
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Jesús Sanmartín-Matalobos
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, and Institut de Química Teórica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, and Institut de Química Teórica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Zhang JH, Chen WT. Photoluminescent and semiconductive properties of a novel praseodymium compound. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1916758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jin-Hai Zhang
- Food and Drug Inspection Center, Ji’an, Jiangxi, China
| | - Wen-Tong Chen
- Institute of Applied Chemistry, Ji’an Key Laboratory of Photoelectric Crystal Materials and Device, Jiangxi Province Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Humic Acid Utilization Engineering Research Center of Jiangxi Province, Jinggangshan University, Ji’an, Jiangxi, P.R. China
- Department of Ecological and Resources Engineering, Fujian Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian, P.R. China
| |
Collapse
|
4
|
Abstract
In this review, we describe all the structurally characterized complexes containing lanthanoids (Ln, including La and group 3 metals: Y and Lu) and any anilato-type ligand (3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion = C6O4X22−). We present all the anilato-Ln compounds including those where, besides the anilato-type ligand, there is one or more coligands or solvent molecules coordinated to the lanthanoid ions. We show the different structural types observed in these compounds: from discrete monomers, dimers and tetramers to extended 1D, 2D and 3D lattices with different topologies. We also revise the magnetic properties of these Ln-anilato compounds, including single-molecule magnet (SMM) and single-ion magnet (SIM) behaviours. Finally, we show the luminescent and electrochemical properties of some of them, their gas/solvent adsorption/absorption and exchange capacity and the attempts to prepare them as thin films.
Collapse
|
5
|
Bayer U, Werner D, Berkefeld A, Maichle-Mössmer C, Anwander R. Cerium-quinone redox couples put under scrutiny. Chem Sci 2020; 12:1343-1351. [PMID: 34163897 PMCID: PMC8179043 DOI: 10.1039/d0sc04489j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homoleptic cerous complexes Ce[N(SiMe3)2]3, [Ce{OSi(OtBu)3}3]2 and [Ce{OSiiPr3}3]2 were employed as thermally robust, weakly nucleophilic precursors to assess their reactivity towards 1,4-quinones in non-aqueous solution. The strongly oxidizing quinones 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or tetrachloro-1,4-benzoquinone (Cl4BQ) readily form hydroquinolato-bridged ceric complexes of the composition [(CeIVL3)2(μ2-O2C6R4)]. Less oxidising quinones like 2,5-di-tert-butyl-1,4-benzoquinone (tBu2BQ) tend to engage in redox equilibria with the ceric hydroquinolato-bridged form being stable only in the solid state. Even less oxidising quinones such as tetramethyl-1,4-benzoquinone (Me4BQ) afford cerous semiquinolates of the type [(CeIIIL2(thf)2)(μ2-O2C6Me4)]2. All complexes were characterised by X-ray diffraction, 1H, 13C{1H} and 29Si NMR spectroscopy, DRIFT spectroscopy, UV-Vis spectroscopy and CV measurements. The species putatively formed during the electrochemical reduction of [CeIV{N(SiMe3)2}3]2(μ2-O2C6H4) could be mimicked by chemical reduction with CoIICp2 yielding [(CeIII{N(SiMe3)2}3)2(μ2-O2C6H4)][CoIIICp2]2.
Collapse
Affiliation(s)
- Uwe Bayer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen (EKUT) Auf der Morgenstelle 18 72076 Tübingen Germany [http://uni-tuebingen.de/syncat-anwander]
| | - Daniel Werner
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen (EKUT) Auf der Morgenstelle 18 72076 Tübingen Germany [http://uni-tuebingen.de/syncat-anwander]
| | - Andreas Berkefeld
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen (EKUT) Auf der Morgenstelle 18 72076 Tübingen Germany [http://uni-tuebingen.de/syncat-anwander]
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen (EKUT) Auf der Morgenstelle 18 72076 Tübingen Germany [http://uni-tuebingen.de/syncat-anwander]
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen (EKUT) Auf der Morgenstelle 18 72076 Tübingen Germany [http://uni-tuebingen.de/syncat-anwander]
| |
Collapse
|
6
|
Haiduc I. Inverse coordination chemistry: oxocarbons, other polyoxo carbocyclic molecules and oxygen heterocycles as coordination centers. Topology and systematization. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1825697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Ma YJ, Hu JX, Han SD, Pan J, Li JH, Wang GM. Manipulating On/Off Single-Molecule Magnet Behavior in a Dy(III)-Based Photochromic Complex. J Am Chem Soc 2020; 142:2682-2689. [PMID: 31955567 DOI: 10.1021/jacs.9b13461] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exploitation of room temperature (RT) photochromism and photomagnetism to induce single-molecule magnet (SMM) behavior has potential applications toward optical switches and magnetic memories, and remains a tremendous challenge in the development of new bulk magnets. Herein, a series of chain complexes [Ln3(H-HEDP)3(H2-HEDP)3]·2H3-TPT·H4-HEDP·10H2O (QDU-1; Ln = Dy (QDU-1(Dy)), Gd (QDU-1(Gd)), and Y (QDU-1(Y)); HEDP = hydroxyethylidene diphosphonate; TPT = 2,4,6-tri(4-pyridyl)-1,3,5-triazine) were synthesized by solvothermal reactions. All the compounds exhibited reversible photochromic and photomagnetic behaviors via UV light irradiation at RT, induced by the photogenerated radicals via a photoinduced electron transfer (PET) mechanism. More importantly, the PET process induced significant variations in magnetic interactions for the Dy(III) congener. Strong ferromagnetic coupling with remarkably slow magnetic relaxation without applied dc fields was observed between DyIII ions and photogenerated O• radicals, showing SMM behavior after RT illumination. For the first time, we observed the reversible RT photochromism and photomagnetism in the lanthanide-based materials. This work realized the radicals-actuated on/off SMM behavior via RT light irradiation, providing a new strategy for constructing the light-induced SMMs.
Collapse
Affiliation(s)
- Yu-Juan Ma
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering , Qingdao University , Shandong 266071 , P. R. China
| |
Collapse
|
8
|
Gao W, Zhou AM, Wei H, Wang CL, Liu JP, Zhang XM. Water-stable LnIII-based coordination polymers displaying slow magnetic relaxation and luminescence sensing properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj00828a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Six Ln-CPs were synthesized: Dy-CP shows slow magnetic relaxation, and Eu-CP and Tb-CP exhibit recyclable and multi-responsive sensing for Fe3+, MnO4−, CrVI-anions (CrO42−, Cr2O72−) and TNP in an aqueous system.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Ai-Mei Zhou
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Han Wei
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Cui-Li Wang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Huaibei Normal University
- Anhui 235000
- China
| |
Collapse
|
9
|
Lemes MA, Mavragani N, Richardson P, Zhang Y, Gabidullin B, Brusso JL, Moilanen JO, Murugesu M. Unprecedented intramolecular pancake bonding in a {Dy2} single-molecule magnet. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00365d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first example of unique coordination induced intramolecular pancake bonding was achieved through the reduction of two bis(pyrazolyl)-tetrazine ligands.
Collapse
Affiliation(s)
- Maykon A. Lemes
- Department of Chemistry and Biomolecular Sciences. University of Ottawa
- ON
- Canada
| | - Niki Mavragani
- Department of Chemistry and Biomolecular Sciences. University of Ottawa
- ON
- Canada
| | - Paul Richardson
- Department of Chemistry and Biomolecular Sciences. University of Ottawa
- ON
- Canada
| | - Yixin Zhang
- Department of Chemistry and Biomolecular Sciences. University of Ottawa
- ON
- Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences. University of Ottawa
- ON
- Canada
| | - Jaclyn L. Brusso
- Department of Chemistry and Biomolecular Sciences. University of Ottawa
- ON
- Canada
| | - Jani O. Moilanen
- Department of Chemistry
- Nanoscience Centre
- University of Jyväskylä
- FI-40014
- Finland
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences. University of Ottawa
- ON
- Canada
| |
Collapse
|
10
|
Gao W, Huang H, Zhou AM, Wei H, Liu JP, Zhang XM. Three 3D LnIII-MOFs based on a nitro-functionalized biphenyltricarboxylate ligand: syntheses, structures, and magnetic properties. CrystEngComm 2020. [DOI: 10.1039/c9ce01245a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cluster, chain or layer-based 3D Ln-MOFs have been synthesized and they exhibit ferromagnetic or antiferromagnetic interactions. Furthermore, the Dy-MOF shows slow relaxation behavior.
Collapse
Affiliation(s)
- Wei Gao
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
| | - Hong Huang
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
| | - Ai-Mei Zhou
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
| | - Han Wei
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
| | - Jie-Ping Liu
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science
- Huaibei Normal University
- China
| |
Collapse
|
11
|
Greenough J, Zhou Z, Wei Z, Petrukhina MA. Versatility of cyclooctatetraenyl ligands in rare earth metal complexes of the [M 2(COT) 3(THF) 2] (M = Y and La) type. Dalton Trans 2019; 48:5614-5620. [PMID: 30958499 DOI: 10.1039/c9dt00868c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new organometallic cyclooctatetraenyl complexes of the type [M2(COT)3(THF)2] (M = Y and La) have been prepared, using optimized synthetic procedures, and fully characterized by X-ray diffraction analysis, IR and 1H NMR spectroscopies. The structures can be represented as formed by the double-decker [M(COT)2]- anion with an asymmetrically bound cationic [M(COT)(THF)2]+ unit. The COT rings in the anionic sandwich are not equidistant from the metal with the M-COTcentroid distances measuring at 1.991(5) Å and 2.074(5) Å for [Y(COT)2]-vs. 2.045(4) Å and 2.154(5) Å for [La(COT)2]-. The sandwich fragments are η2-coordinated to the second metal center with the average M-C distances of 2.837(4) Å and 2.879(5) Å for yttrium and lanthanum complexes, respectively. The M-COTcentroid distances in the cationic unit are 1.962(4) Å for the former and 2.009(2) Å for the latter.
Collapse
Affiliation(s)
- Joshua Greenough
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|
12
|
Long J, Selikhov AN, Mamontova E, Lyssenko KA, Guari Y, Larionova J, Trifonov AA. Single-molecule magnet behaviour in a Dy(iii) pentagonal bipyramidal complex with a quasi-linear Cl–Dy–Cl sequence. Dalton Trans 2019; 48:35-39. [DOI: 10.1039/c8dt04098b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Slow relaxation of magnetization in a chloride pentagonal bipyramidal complex.
Collapse
Affiliation(s)
- Jérôme Long
- Institut Charles Gerhardt
- Equipe Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- ENSCM
- CNRS
| | - Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| | - Ekaterina Mamontova
- Institut Charles Gerhardt
- Equipe Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- ENSCM
- CNRS
| | | | - Yannick Guari
- Institut Charles Gerhardt
- Equipe Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- ENSCM
- CNRS
| | - Joulia Larionova
- Institut Charles Gerhardt
- Equipe Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- ENSCM
- CNRS
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
| |
Collapse
|
13
|
Yu S, Chen Z, Hu H, Li B, Liang Y, Liu D, Zou H, Yao D, Liang F. Two mononuclear dysprosium(iii) complexes with their slow magnetic relaxation behaviors tuned by coordination geometry. Dalton Trans 2019; 48:16679-16686. [DOI: 10.1039/c9dt03253c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report here two field-induced single-ion magnets of Dy(iii), which present octahedral and pentagonal–bipyramidal coordination geometries, respectively, with their magnetic performances tuned by the coordination geometries of Dy(iii).
Collapse
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang 473061
- P. R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Huahong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Di Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
14
|
Cador O, Le Guennic B, Pointillart F. Electro-activity and magnetic switching in lanthanide-based single-molecule magnets. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00875f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work reviews switching of single-molecule magnetic behaviour achieved through various stimuli such as temperature, light irradiation, redox processes, solvation/desolvation, and magnetic field.
Collapse
Affiliation(s)
- Olivier Cador
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Boris Le Guennic
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| | - Fabrice Pointillart
- Univ Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226
- F-35000 Rennes
- France
| |
Collapse
|
15
|
Chen WT, Zhang ZX, Luo H, Sui Y, Liu DS. Series of Lanthanide–Mercury Compounds with Three-Dimensional Structures: Rational Preparation, Structures and Properties. Inorg Chem 2018; 57:11626-11632. [DOI: 10.1021/acs.inorgchem.8b01739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen-Tong Chen
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, P. R. China
| | - Zhuan-Xia Zhang
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, P. R. China
| | - Hui Luo
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, P. R. China
| | - Yan Sui
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, P. R. China
| | - Dong-Sheng Liu
- Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, P. R. China
| |
Collapse
|
16
|
Zhang WY, Chen P, Li HF, Zhang YQ, Yan PF, Sun WB. Dinuclear Dy 2 Single-Molecule Magnets: Functional Modulation on the Bridging Ligand and Different Relaxation Performances within the Single-Crystal to Single-Crystal System. Chem Asian J 2018; 13:1725-1734. [PMID: 29663704 DOI: 10.1002/asia.201800418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/13/2018] [Indexed: 11/08/2022]
Abstract
Crystal structures, single-molecule magnetic behavior, and ab initio calculations of four new phenoxo-bridged dinuclear dysprosium complexes and their gadolinium(III) analogues are explored. Complexes [Dy2 (DMOMP)2 (DBM)4 ]2 ⋅CHCl3 (1; DMOMP=1-methyl-3,5-dimethoxy-4-hydroxybenzene, DBM=1,3-diphenylpropane-1,3-dione); [Dy2 (DMOAP)2 (DBM)4 ]2 ⋅CHCl3 (2; DMOAP=syringaldehyde); Dy2 (DMOEP)2 (DBM)4 (3; DMOEP=methyl syringate); and solvent-free Dy2 (DMOMP)2 (DBM)4 (4), which is obtained by the transformation of single crystal into single crystal from 1, have nearly identical core structures and only differ in the substituents at the para position of the phenol moieties of the bridging ligand. In this system, the electronic effects are efficiently implemented to significantly modify the ligand field strength and exchange coupling by modulating the substituents on the phenol backbone. The effective energy barrier (Ueff ) of magnetization reversal is improved significantly to fivefold magnitude, at most, and the hysteresis temperature up to 3.5 K by deliberately using the electron-withdrawing substituent to replace the electron-donating one. The origin of the two relaxation processes in 1 is mostly attributed to the existence of two molecules in one unit, which is illuminated by means of the transformation of single crystal into single crystal.
Collapse
Affiliation(s)
- Wan-Ying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, 150080, Harbin, P.R. China
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, 150080, Harbin, P.R. China
| | - Hong-Feng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, 150080, Harbin, P.R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, 210023, Nanjing, P.R. China
| | - Peng-Fei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, 150080, Harbin, P.R. China
| | - Wen-Bin Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, 150080, Harbin, P.R. China.,Key Laboratory of Chemical Engineering Process, & Technology for High-efficiency Conversion, College of Heilongjiang Province, P.R. China
| |
Collapse
|
17
|
Zhang P, Perfetti M, Kern M, Hallmen PP, Ungur L, Lenz S, Ringenberg MR, Frey W, Stoll H, Rauhut G, van Slageren J. Exchange coupling and single molecule magnetism in redox-active tetraoxolene-bridged dilanthanide complexes. Chem Sci 2018; 9:1221-1230. [PMID: 29675167 PMCID: PMC5885778 DOI: 10.1039/c7sc04873d] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022] Open
Abstract
Tetraoxolene radical-bridged lanthanide SMM systems were prepared for the first time by reduction of the respective neutral compounds. Magnetic measurements reveal the profound influence of the radical center on magnetic behavior. Strong magnetic couplings are revealed in the radical species, which switch on SMM behavior under zero applied field for DyIII and TbIII compounds. HFEPR spectra unravel the contributions of the magnetic coupling and the magnetic anisotropy. For GdIII this results in much more accurate magnetic coupling parameters with respect to bulk magnetic measurements.
Collapse
Affiliation(s)
- Peng Zhang
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| | - Mauro Perfetti
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
- Department of Chemistry , University of Copenhagen , Universitetparken 5 , 2100 Copenhagen , Denmark
| | - Michal Kern
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| | - Philipp P Hallmen
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| | - Liviu Ungur
- Theory of Nanomaterials Group , INPAC-Institute of Nanoscale Physics and Chemistry , Katholieke Universiteit Leuven , 3001 Leuven , Belgium
| | - Samuel Lenz
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| | - Mark R Ringenberg
- Institut für Anorganische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Wolfgang Frey
- Institut für Organische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Hermann Stoll
- Institut für Theoretische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Guntram Rauhut
- Institut für Theoretische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 , Stuttgart , Germany .
| |
Collapse
|
18
|
Pan Y, Zhang H, Qin Y, Ge Y, Cui Y, Li Y, Liu W, Dong Y. Eight homodinuclear lanthanide complexes prepared from a quinoline based ligand: structural diversity and single-molecule magnetism behaviour. NEW J CHEM 2018. [DOI: 10.1039/c7nj04622g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight dinuclear complexes are prepared and characterized; complex 6 exhibits SMM behavior with a Ueff value of 14.83 K.
Collapse
Affiliation(s)
- Yangdan Pan
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Haifeng Zhang
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yaru Qin
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yu Ge
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yanfeng Cui
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Wei Liu
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yaping Dong
- Key Laboratory of Salt Lake Resources and Chemistry
- Qinghai Institute of Salt Lakes
- Chinese Academy of Sciences
- Xining 810008
- P. R. China
| |
Collapse
|