1
|
Azmanova M, Rafols L, Cooper PA, Seaton CC, Shnyder SD, Pitto‐Barry A. Anticancer Water-Soluble Organoruthenium Complexes: Synthesis and Preclinical Evaluation. Chembiochem 2022; 23:e202200259. [PMID: 35838006 PMCID: PMC9545474 DOI: 10.1002/cbic.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/13/2022] [Indexed: 11/18/2022]
Abstract
The synthesis, characterisation, and evaluation of the in vitro cytotoxicity of five maleonitriledithiolate-based ruthenium metal complexes bearing various phosphine ligands towards two ovarian cancer cell lines (A2780 and A2780cisR), one non-small-cell lung cancer cell line (H460) and one normal prostate cell line (PNT2) are presented herein. These 18-electron complexes were designed with four water-soluble phosphine ligands to increase the water-solubility character of the corresponding electron-deficient ruthenium complex which showed great in vitro promises, and triphenylphosphine for comparison. The complexes with triphenylphosphine-3,3',3''-trisulfonic acid and triphenylphosphine present similar cytotoxicity compared to the 16-electron precursor, with equal cytotoxicity to both A2780 and A2780cisR. Hints at the mechanism of action suggest an apoptotic pathway based on reactive oxygen species (ROS) production. No toxicity was observed in preliminary in vivo pilot studies for these two complexes in subcutaneous A2780 and A2780cisR xenograft models, with some evidence of tumour growth delay.
Collapse
Affiliation(s)
- Maria Azmanova
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | - Laia Rafols
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | | | - Colin C. Seaton
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | - Steven D. Shnyder
- Institute of Cancer TherapeuticsUniversity of BradfordBD7 1DPBradfordUK
| | - Anaïs Pitto‐Barry
- Université Paris-SaclayCNRSInstitut Galien Paris-Saclay92296Châtenay-MalabryFrance
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| |
Collapse
|
2
|
Minakshi P, Kumar R, Ghosh M, Brar B, Barnela M, Lakhani P. Application of Polymeric Nano-Materials in Management of Inflammatory Bowel Disease. Curr Top Med Chem 2021; 20:982-1008. [PMID: 32196449 DOI: 10.2174/1568026620666200320113322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory Bowel Disease (IBD) is an umbrella term used to describe disorders that involve Crohn's disease (CD), ulcerative colitis (UC) and pouchitis. The disease occurrence is more prevalent in the working group population which not only hampers the well being of an individual but also has negative economical impact on society. The current drug regime used therapy is very costly owing to the chronic nature of the disease leading to several side effects. The condition gets more aggravated due to the lower concentration of drug at the desired site. Therefore, in the present scenario, a therapy is needed which can maximize efficacy, adhere to quality of life, minimize toxicity and doses, be helpful in maintaining and stimulating physical growth of mucosa with minimum disease complications. In this aspect, nanotechnology intervention is one promising field as it can act as a carrier to reduce toxicity, doses and frequency which in turn help in faster recovery. Moreover, nanomedicine and nanodiagnostic techniques will further open a new window for treatment in understanding pathogenesis along with better diagnosis which is poorly understood till now. Therefore the present review is more focused on recent advancements in IBD in the application of nanotechnology.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology & Biochemistry, LUVAS, Hisar-125 004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Manju Barnela
- Department of Nano & Biotechnology, Guru Jambheshwar University, Hisar-125001, Haryana, India
| | - Preeti Lakhani
- Department of Veterinary Physiology & Biochemistry, LUVAS, Hisar-125 004, India
| |
Collapse
|
3
|
Habas K, Soldevila-Barreda JJ, Azmanova M, Rafols L, Pitto-Barry A, Anderson D, Barry NPE. Evaluation of the Toxicity of Two Electron-Deficient Half-Sandwich Complexes against Human Lymphocytes from Healthy Individuals. ChemMedChem 2020; 16:624-629. [PMID: 33119178 DOI: 10.1002/cmdc.202000672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Electron-deficient half-sandwich complexes are a class of under-studied organometallics with demonstrated potential as metallodrug candidates. This study investigates the effect of two 16-electron organoruthenium complexes ([(p-cym)Ru(benzene-1,2-dithiolato)] (1) and [(p-cym)Ru(maleonitriledithiolate)] (2)) on the cell viability of non-immortalised human lymphocytes from healthy individuals. The genotoxic effects of 1 and 2 in lymphocytes are also investigated by using the Comet and cytokinesis-block micronucleus assays. Gene expression studies were carried out on a panel of genes involved in apoptosis and the DNA damage-repair response. Results show that the two 16-electron complexes do not have significant effect on the cell viability of human lymphocytes from healthy individuals. However, an increase in DNA damage is induced by both compounds, presumably through oxidative stress production.
Collapse
Affiliation(s)
- Khaled Habas
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | | | - Maria Azmanova
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Laia Rafols
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Anaïs Pitto-Barry
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Diana Anderson
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Nicolas P E Barry
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
4
|
Soldevila-Barreda JJ, Azmanova M, Pitto-Barry A, Cooper PA, Shnyder SD, Barry NPE. Preclinical Anticancer Activity of an Electron-Deficient Organoruthenium(II) Complex. ChemMedChem 2020; 15:982-987. [PMID: 32237195 DOI: 10.1002/cmdc.202000096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 01/24/2023]
Abstract
Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt-resistance mechanisms. Electron-deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron-deficient organoruthenium complex [(p-cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53-/-), and non-small cell lung H460 cancer cell lines. It shows no cross-resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53-independent. In vivo evaluation in the hollow-fibre assay across a panel of cancer cell types and subcutaneous H460 non-small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow-up, this work is the first preclinical study of electron-deficient half-sandwich complexes and highlights their promise as anticancer drug candidates.
Collapse
Affiliation(s)
| | - Maria Azmanova
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Anaïs Pitto-Barry
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Patricia A Cooper
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, UK
| | - Steven D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, UK
| | - Nicolas P E Barry
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
5
|
Azmanova M, Soldevila-Barreda J, Bani Hani H, Lord RM, Pitto-Barry A, Picksley SM, Barry NPE. Anticancer Activity of Electron-Deficient Metal Complexes against Colorectal Cancer in vitro Models. ChemMedChem 2019; 14:1887-1893. [PMID: 31545555 DOI: 10.1002/cmdc.201900528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/17/2019] [Indexed: 11/12/2022]
Abstract
An evaluation of the in vitro cytotoxicity of nine electron-deficient half-sandwich metal complexes towards two colorectal cancer cell lines (HCT116 p53+/+, HCT116 p53-/-) and one normal prostate cell line (PNT2) is presented herein. Three complexes were found to be equally cytotoxic towards both colorectal cancer cell lines, suggesting a p53-independent mechanism of action. These complexes are 12 to 34× more potent than cisplatin against HCT116 p53+/+ and HCT116 p53-/- cells. Furthermore, they were found to exhibit little or no cytotoxicity towards PNT2 normal cells, with selectivity ratios greater than 50. To gain an insight into the potential mechanisms of action of the most active compounds, their effects on the expression levels of a panel of genes were measured using qRT-PCR against treated HCT116 p53+/+ and HCT116 p53-/- cells, and cell-cycle analysis was carried out.
Collapse
Affiliation(s)
- Maria Azmanova
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Joan Soldevila-Barreda
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Hira Bani Hani
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Rianne M Lord
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Anaïs Pitto-Barry
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Steven M Picksley
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| | - Nicolas P E Barry
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
| |
Collapse
|
6
|
Zhong W, Liu X, Zhu H, Zhao J, Yan H. Reactivity Modes of Cp*M-Type Half-Sandwich Dichalcogenolate Complexes with 2,6-Disubstituted Aryl Azides: The Effects of the Metal Center, Chalcogen, and Ligand Moiety on Product Formation. ACS OMEGA 2019; 4:12719-12726. [PMID: 31460394 PMCID: PMC6682133 DOI: 10.1021/acsomega.9b01364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Cp*M-type half-sandwich dichalcogenolate complexes bearing either carborane or benzene moieties show diverse reactivity patterns toward two selected 2,6-disubstituted aryl azides under thermal or photolytic conditions. The chalcogen (S and Se) has little effect on the formation of final products. However, the effects of both the metal center and the ligand moiety of the metal precursor on the reactions were significant. Compared to iridium precursor Cp*IrS2C2B10H10 (1a), rhodium and cobalt analogues (1b: Cp*RhS2C2B10H10, 1c: Cp*CoS2C2B10H10) demonstrated no reactivity toward aryl azides. The reaction of Cp*IrSe2C2B10H10 (1d) with 2,6-Me2C6H3N3 led to the clean formation of complex 2 with C(sp3)-H activation of one methyl group of the Cp* ligand and loss of N2 along with the rearrangement of the benzene ring of the original azide ligand, whereas the treatment of Cp*IrS2C6H4 (1e) with 2,6-Me2C6H3N3 under the same reaction conditions gave a 16-electron half-sandwich complex 5 featuring C-N coupling on one methyl group from the Cp* ligand. When 2-Me-6-NO2C6H3N3 was employed, the same reaction patterns for forming products (3 and 6) with the nitro group migrating to the para-position versus the original aryl azide were observed. In addition, the reaction with metal precursor 1d generated another product 4 featuring the exchange of nitro and azido groups, while the reaction with 1e afforded another complex 7 with the formation of the N-NO2 moiety. All new complexes were characterized by spectroscopy methods, and single-crystal X-ray analyses were performed for complexes 2 and 5-7. Furthermore, radical mechanisms for the formation of complexes 2-7 were proposed.
Collapse
Affiliation(s)
- Wei Zhong
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiaoming Liu
- College
of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Hailiang Zhu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing Zhao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong Yan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry
and Chemical Engineering, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
7
|
Pitto-Barry A, Barry NPE. Influence of boron doping on the dynamics of formation of Os metal nanoclusters on graphitic surfaces. Chem Commun (Camb) 2019; 55:6038-6041. [DOI: 10.1039/c9cc01974j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unprecedented metal–boron interactions within nanomaterials and insights into the role of doping heteroatoms in nucleation processes are reported herein.
Collapse
|
8
|
Pitto-Barry A, Barry NPE. Controlled Release of Carbon Monoxide from a Pseudo Electron-Deficient Organometallic Complex. ACS OMEGA 2018; 3:15623-15627. [PMID: 30533578 PMCID: PMC6275942 DOI: 10.1021/acsomega.8b02154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
A 16-electron iridium organometallic is reacted with carbon monoxide to form an 18-electron CO-adduct. This CO-adduct is stable for weeks in the solid state, but quickly reverts to its parent 16-e complex in tetrahydrofuran solution, releasing CO(g). Using a simple methodology, we show that this gas can subsequently be used to perform a carbonylation reaction on another molecule.
Collapse
|
9
|
Zhang J, Pitto-Barry A, Shang L, Barry NPE. Anti-inflammatory activity of electron-deficient organometallics. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170786. [PMID: 29291071 PMCID: PMC5717645 DOI: 10.1098/rsos.170786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/26/2017] [Indexed: 05/14/2023]
Abstract
We report an evaluation of the cytotoxicity of a series of electron-deficient (16-electron) half-sandwich precious metal complexes of ruthenium, osmium and iridium ([Os/Ru(η6-p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (1/2), [Ir(η5-pentamethylcyclopentadiene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (3), [Os/Ru(η6-p-cymene)(benzene-1,2-dithiolato)] (4/5) and [Ir(η5-pentamethylcyclopentadiene)(benzene-1,2-dithiolato)] (6)) towards RAW 264.7 murine macrophages and MRC-5 fibroblast cells. Complexes 3 and 6 were found to be non-cytotoxic. The anti-inflammatory activity of 1-6 was evaluated in both cell lines after nitric oxide (NO) production and inflammation response induced by bacterial endotoxin lipopolysaccharide (LPS) as the stimulus. All metal complexes were shown to exhibit dose-dependent inhibitory effects on LPS-induced NO production on both cell lines. Remarkably, the two iridium complexes 3 and 6 trigger a full anti-inflammatory response against LPS-induced NO production, which opens up new avenues for the development of non-cytotoxic anti-inflammatory drug candidates with distinct structures and solution chemistry from that of organic drugs, and as such with potential novel mechanisms of action.
Collapse
Affiliation(s)
| | | | - Lijun Shang
- Authors for correspondence: Lijun Shang e-mail:
| | | |
Collapse
|