1
|
Wei Y, Jiang J, Jing Y, Ke Z, Zhang L. Bifunctional Ligand Enables Gold-Catalyzed Propargyl C-H Functionalization via Reactive Gold Allenylidene Intermediate. Angew Chem Int Ed Engl 2024; 63:e202402286. [PMID: 38659404 PMCID: PMC11572476 DOI: 10.1002/anie.202402286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Gold allenylidene species have been seldom exploited as reactive intermediates in synthetically versatile catalytic reactions. By employing alkynylbenziodoxoles as the substrates and bifunctional WangPhos as the metal ligand, this work demonstrated ready catalytic access to these intermediates of general substitution patterns and their electrophilic reactivities at the γ-carbon center with a diverse range of nucleophiles. The reaction is driven by the reductive decomposition of the benziodoxole moiety and achieves the replacement of a propargylic proton with an N/O/C-based nucleophile, hence realizing reactivity umpolung. Corroborated by Density Functional Theory (DFT) calculations, the reaction mechanism involves a mild propargylic deprotonation. In contrast to prior works employing a tertiary amine functionality, a weakly BrØnsted-basic amide group in WangPhos is surprisingly effective in deprotonation at the propargylic position under a gold-ligand cooperation regime.
Collapse
Affiliation(s)
- Yongliang Wei
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jingxing Jiang
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaru Jing
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PFCM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Arakawa C, Kanemoto K, Nakai K, Wang C, Morohashi S, Kwon E, Ito S, Yoshikai N. Carboiodanation of Arynes: Organoiodine(III) Compounds as Nucleophilic Organometalloids. J Am Chem Soc 2024; 146:3910-3919. [PMID: 38315817 DOI: 10.1021/jacs.3c11524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Organic iodine(III) compounds represent the most widely used hypervalent halogen compounds in organic synthesis, where they typically perform the role of an electrophile or oxidant to functionalize electron-rich or -nucleophilic organic compounds. In contrast to this convention, we discovered their unique reactivity as organometallic-like nucleophiles toward arynes. Equipped with diverse transferable ligands and supported by a tethered spectator ligand, the organoiodine(III) compounds undergo addition across the electrophilic C-C triple bond of arynes while retaining the trivalency of the iodine center. This carboiodanation reaction can forge a variety of aryl-alkynyl, aryl-alkenyl, and aryl-(hetero)aryl bonds along with the concurrent formation of an aryl-iodine(III) bond under mild conditions. The newly formed aryl-iodine(III) bond serves as a versatile linchpin for downstream transformations, particularly as an electrophilic reaction site. The amphoteric nature of the iodine(III) group as a metalloid and a leaving group in this sequence enables the flexible and expedient synthesis of extended π-conjugated molecules and privileged biarylphosphine ligands, where all of the iodine(III)-containing compounds can be handled as air- and thermally stable materials.
Collapse
Affiliation(s)
- Chisaki Arakawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Katsuya Nakai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Shunya Morohashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Rani N, Soni R, Sihag M, Kinger M, Aneja DK. Combined Approach of Hypervalent Iodine Reagents and Transition Metals in Organic Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neha Rani
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Rinku Soni
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Monika Sihag
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Mayank Kinger
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| | - Deepak K. Aneja
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani-127021 Haryana India
| |
Collapse
|
4
|
Chintawar CC, Bhoyare VW, Mane MV, Patil NT. Enantioselective Au(I)/Au(III) Redox Catalysis Enabled by Chiral (P,N)-Ligands. J Am Chem Soc 2022; 144:7089-7095. [PMID: 35436097 DOI: 10.1021/jacs.2c02799] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presented herein is the first report of enantioselective Au(I)/Au(III) redox catalysis, enabled by a newly designed hemilabile chiral (P,N)-ligand (ChetPhos). The potential of this concept has been demonstrated by the development of enantioselective 1,2-oxyarylation and 1,2-aminoarylation of alkenes which provided direct access to the medicinally relevant 3-oxy- and 3-aminochromans (up to 88% yield and 99% ee). DFT studies were carried out to unravel the enantiodetermining step, which revealed that the stronger trans influence of phosphorus allows selective positioning of the substrate in the C2-symmetric chiral environment present around nitrogen, imparting a high level of enantioselectivity.
Collapse
Affiliation(s)
- Chetan C Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Manoj V Mane
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India.,KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
5
|
Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT. The interplay of carbophilic activation and Au(I)/Au(III) catalysis: an emerging technique for 1,2-difunctionalization of C-C multiple bonds. Chem Soc Rev 2021; 50:10422-10450. [PMID: 34323240 DOI: 10.1039/d0cs00700e] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold complexes have emerged as the catalysts of choice for various functionalization reactions of C-C multiple bonds due to their inherent carbophilic nature. In a parallel space, efforts to realize less accessible cross-coupling reactivity have led to the development of various strategies that facilitate the arduous Au(i)/Au(iii) redox cycle. The interplay of the two important reactivity modes encountered in gold catalysis, namely carbophilic activation and Au(i)/Au(iii) catalysis, has allowed the development of a novel mechanistic paradigm that sponsors 1,2-difunctionalization reactions of various C-C multiple bonds. Interestingly, the reactivity as well as selectivity obtained through this interplay could be complementary to that obtained by the use of various other transition metals that mainly involved the classical oxidative addition/migratory insertion pathways. The present review shall comprehensively cover all the 1,2-difunctionalization reactions of C-C multiple bonds that have been realized by the interplay of the two important reactivity modes and categorized on the basis of the method that has been employed to foster the Au(i)/Au(iii) redox cycle.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Akash G Tathe
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Avishek Das
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Chetan C Chintawar
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
6
|
Font P, Ribas X. Fundamental Basis for Implementing Oxidant‐Free Au(I)/Au(III) Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pau Font
- QBIS-CAT group Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi Girona 17003 Catalonia Spain
| | - Xavi Ribas
- QBIS-CAT group Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi Girona 17003 Catalonia Spain
| |
Collapse
|
7
|
Rodriguez J, Tabey A, Mallet-Ladeira S, Bourissou D. Oxidative additions of alkynyl/vinyl iodides to gold and gold-catalyzed vinylation reactions triggered by the MeDalphos ligand. Chem Sci 2021; 12:7706-7712. [PMID: 34168822 PMCID: PMC8188461 DOI: 10.1039/d1sc01483h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
The hemilabile Ad2P(o-C6H4)NMe2 ligand promotes fast, quantitative and irreversible oxidative addition of alkynyl and vinyl iodides to gold. The reaction is general. It works with a broad range of substrates of various electronic bias and steric demand, and proceeds with complete retention of stereochemistry from Z and E vinyl iodides. Both alkynyl and vinyl iodides react faster than aryl iodides. The elementary step is amenable to catalysis. Oxidative addition of vinyl iodides to gold and π-activation of alkenols (and N-alkenyl amines) at gold have been combined to achieve hetero-vinylation reactions. A number of functionalized heterocycles, i.e. tetrahydrofuranes, tetrahydropyranes, oxepanes and pyrrolidines were obtained thereby (24 examples, 87% average yield). Taking advantage of the chemoselectivity for vinyl iodides over aryl iodides, sequential transformations involving first a hetero-vinylation step and then a C-N coupling, a C-C coupling or an heteroarylation were achieved from a vinyl/aryl bis-iodide substrate.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Alexis Tabey
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
8
|
Abstract
This review summarizes the recent achievements of dinuclear gold-catalyzed redox coupling, asymmetric catalysis and photocatalysis. The dinuclear gold catalysts show a better catalytic performance than the mononuclear gold catalysts in certain cases.
Collapse
Affiliation(s)
- Wenliang Wang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
9
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
10
|
Bavi M, Nabavizadeh SM, Hosseini FN, Niknam F, Hamidizadeh P, Hoseini SJ, Raoof F, Abu-Omar MM. Ligand-Mediated C-Br Oxidative Addition to Cycloplatinated(II) Complexes and Benzyl-Me C-C Bond Reductive Elimination from a Cycloplatinated(IV) Complex. ACS OMEGA 2020; 5:28621-28631. [PMID: 33195914 PMCID: PMC7658948 DOI: 10.1021/acsomega.0c03573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Reaction of the Pt(II) complexes [PtMe2(pbt)], 1a, (pbt = 2-(2-pyridyl)benzothiazole) and [PtMe(C^N)(PPh2Me)] [C^N = deprotonated 2-phenylpyridine (ppy), 1b, or deprotonated benzo[h]quinoline (bhq), 1c] with benzyl bromide, PhCH2Br, is studied. The reaction of 1a with PhCH2Br gave the Pt(IV) product complex [PtBr(CH2Ph)Me2(pbt)]. The major trans isomer is formed in a trans oxidative addition (2a), while the minor cis products (2a' and 2a″) resulted from an isomerization process. A solution of Pt(II) complex 1a in the presence of benzyl bromide in toluene at 70 °C after 7 days gradually gave the dibromo Pt(IV) complex [Pt(Br)2Me2(pbt)], 4a, as determined by NMR spectroscopy and single-crystal XRD. The reaction of complexes 1b and 1c with PhCH2Br gave the Pt(IV) complexes [PtMeBr(CH2Ph)(C^N)(PPh2Me)] (C^N = ppy; 2b; C^N = bhq, 2c), in which the phosphine and benzyl ligands are trans. Multinuclear NMR spectroscopy ruled out other isomers. Attempts to grow crystals of the cycloplatinated(IV) complex 2b yielded a previously reported Pt(II) complex [PtBr(ppy)(PPh2Me)], 3b, presumably from reductive elimination of ethylbenzene. UV-vis spectroscopy was used to study the kinetics of reaction of Pt(II) complexes 1a-1c with benzyl bromide. The data are consistent with a second-order SN2 mechanism and the first order in both the Pt complex and PhCH2Br. The rate of reaction decreases along the series 1a ≫ 1c > 1b. Density functional theory calculations were carried out to support experimental findings and understand the formation of isomers.
Collapse
Affiliation(s)
- Marzieh Bavi
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | | | - Fatemeh Niknam
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Peyman Hamidizadeh
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Jafar Hoseini
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Fatemeh Raoof
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Mahdi M. Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Banerjee S, Bhoyare VW, Patil NT. Gold and hypervalent iodine(iii): liaisons over a decade for electrophilic functional group transfer reactions. Chem Commun (Camb) 2020; 56:2677-2690. [PMID: 32090230 DOI: 10.1039/d0cc00106f] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over the last two decades, hypervalent iodine(iii) reagents have evolved from being 'bonding curiosities' to mainstream reagents in organic synthesis, in particular, electrophilic functional group transfer reactions. In this context, gold catalysts have not only emerged as a unique toolbox to facilitate such reactions (especially alkynylations) but also opened new possibilities with their different modes of reactivities for other functional group transfer reactions (acetoxylations and arylations). This feature article critically summarizes hitherto all such Au-catalyzed electrophilic functional group transfer reactions with hypervalent iodine(iii) reagents, emphasizing their mechanistic aspects.
Collapse
Affiliation(s)
- Somsuvra Banerjee
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal-462066, India.
| |
Collapse
|
12
|
Yang Y, Eberle L, Mulks FF, Wunsch JF, Zimmer M, Rominger F, Rudolph M, Hashmi ASK. Trans Influence of Ligands on the Oxidation of Gold(I) Complexes. J Am Chem Soc 2019; 141:17414-17420. [DOI: 10.1021/jacs.9b09363] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yangyang Yang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Florian F. Mulks
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jonas F. Wunsch
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Marc Zimmer
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Zhao X, Tian B, Yang Y, Si X, Mulks FF, Rudolph M, Rominger F, Hashmi ASK. Gold‐Catalyzed Stereoselective Domino Cyclization/Alkynylation of
N
‐Propargylcarboxamides with Benziodoxole Reagents for the Synthesis of Alkynyloxazolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ximei Zhao
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Bing Tian
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Yangyang Yang
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Xiaojia Si
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian F. Mulks
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Zernike Institute for Advanced MaterialsRijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen, The Netherlands
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Affiliation a Chemistry Department, Faculty of ScienceKing Abdulaziz University (KAU) 21589 Jeddah Saudi Arabia
| |
Collapse
|
14
|
Yang Y, Antoni P, Zimmer M, Sekine K, Mulks FF, Hu L, Zhang L, Rudolph M, Rominger F, Hashmi ASK. Dual Gold/Silver Catalysis Involving Alkynylgold(III) Intermediates Formed by Oxidative Addition and Silver‐Catalyzed C−H Activation for the Direct Alkynylation of Cyclopropenes. Angew Chem Int Ed Engl 2019; 58:5129-5133. [DOI: 10.1002/anie.201812577] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/05/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Yangyang Yang
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Patrick Antoni
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marc Zimmer
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kohei Sekine
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian F. Mulks
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Long Hu
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lumin Zhang
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
15
|
Yang Y, Antoni P, Zimmer M, Sekine K, Mulks FF, Hu L, Zhang L, Rudolph M, Rominger F, Hashmi ASK. Duale Gold/Silber‐Katalyse über oxidative Addition zu Alkinylgold(III)‐Zwischenstufen und silberkatalysierte C‐H‐Aktivierung für die direkte Alkinylierung von Cyclopropenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812577] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yangyang Yang
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Patrick Antoni
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Marc Zimmer
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Kohei Sekine
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Florian F. Mulks
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Long Hu
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Lumin Zhang
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Matthias Rudolph
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Frank Rominger
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabien
| |
Collapse
|
16
|
Hyatt IFD, Dave L, David N, Kaur K, Medard M, Mowdawalla C. Hypervalent iodine reactions utilized in carbon–carbon bond formations. Org Biomol Chem 2019; 17:7822-7848. [DOI: 10.1039/c9ob01267b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review covers recent developments of hypervalent iodine chemistry in dearomatizations, radicals, hypervalent iodine-guided electrophilic substitution, arylations, photoredox, and more.
Collapse
Affiliation(s)
| | - Loma Dave
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Navindra David
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Kirandeep Kaur
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Marly Medard
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Cyrus Mowdawalla
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| |
Collapse
|
17
|
Hari DP, Caramenti P, Waser J. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung. Acc Chem Res 2018; 51:3212-3225. [PMID: 30485071 DOI: 10.1021/acs.accounts.8b00468] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The efficient synthesis of organic compounds is an important field of research, which sets the basis for numerous applications in medicine or materials science. Based on the polarity induced by functional groups, logical bond disconnections can be deduced for the elaboration of organic compounds. Nevertheless, this classical approach makes synthesis rigid, as not all bond disconnections are possible. The concept of Umpolung has been therefore introduced: by inverting the normal polarity of functional groups, new disconnections become possible. Among the tools for achieving Umpolung, hypervalent iodine reagents occupy a privileged position. The electrophilicity of the iodine atom and the reactivity of the hypervalent bond allow access to electrophilic synthons starting from nucleophiles. Nevertheless, some classes of hypervalent iodine reagents can be too unstable for many applications, in particular involving metal catalysis. In this context, cyclic hypervalent iodine reagents, especially benziodoxolones (BXs), have been known for a long time to be more stable than their acyclic counterparts, yet their synthetic potential had not been fully exploited. In this Account, we report our efforts since 2008 on the use of BX reagents in the development of new transformations in organic synthesis, which showed for the first time their versatility as synthetic tools. Our work started with electrophilic alkynylation, as alkynes are one of the most important functional groups in organic chemistry, but are usually introduced as nucleophiles. We used ethynylbenziodoxolones (EBXs) in the direct alkynylation of nucleophiles, such as keto esters, thiols, or phosphines. The reagents could then be applied to the gold- and palladium-catalyzed alkynylation of C-H bonds on (hetero)arenes, leading to a more efficient alternative to the Sonogashira reaction. More complex reactions were then developed with formations of several bonds in a single transformation. Gold- and platinum-catalyzed cyclization/alkynylation domino processes gave access to new types of alkynylated heterocycles. Multifunctionalization of olefins became possible through intramolecular oxy- and amino-alkynylations. (Enantioselective) copper-catalyzed oxy-alkynylation of diazo compounds led to stereocenters with perfect atom economy. Finally, EBXs were also used for the alkynylation of radicals generated under photoredox conditions. Since 2013, we then extended the use of BX reagents to other transformations. Azidobenziodoxol(on)ess (ABXs) were used in the azidation of keto esters, enol silanes, and styrenes. New more stable derivatives were introduced. Cyanobenziodoxolones (CBXs) enabled the cyanation of stabilized enolates, thiols, and radicals. Finally, new BX reagents were developed for the Umpolung of indoles and pyrroles. They could be used in metal-catalyzed directed C-H functionalizations, as well as in Lewis acid mediated oxidative coupling to give functionalized bi(hetero)arenes. In the past decade, our group and others have shown that BX reagents are not only "structural beauties", but also extremely useful reagents in synthetic chemistry. A toolbox of cyclic hypervalent iodine reagents is now available to achieve Umpolung-based disconnections. We are convinced that the field is still in its infancy, and many new reagents and transformations still remain to be discovered.
Collapse
Affiliation(s)
- Durga Prasad Hari
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Paola Caramenti
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC
LCSO, BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Banerjee S, Senthilkumar B, Patil NT. Gold-Catalyzed 1,2-Oxyalkynylation of N-Allenamides with Ethylnylbenziodoxolones. Org Lett 2018; 21:180-184. [DOI: 10.1021/acs.orglett.8b03651] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Somsuvra Banerjee
- Division of Organic Chemistry, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune − 411 008, India
- Academy of Scientific and Innovative Research, Ghaziabad − 201 002, India
| | - Beeran Senthilkumar
- Division of Organic Chemistry, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune − 411 008, India
- Academy of Scientific and Innovative Research, Ghaziabad − 201 002, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal − 462 066, India
| |
Collapse
|
19
|
Akram MO, Banerjee S, Saswade SS, Bedi V, Patil NT. Oxidant-free oxidative gold catalysis: the new paradigm in cross-coupling reactions. Chem Commun (Camb) 2018; 54:11069-11083. [DOI: 10.1039/c8cc05601c] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The construction of C–C and C–X (X = hetero atom) bonds is the core aspect for the assembly of molecules. This feature article critically presents an overview of all the redox neutral cross-coupling reactions enabled by gold catalysis, which we believe would stimulate further research activities in this promising area.
Collapse
Affiliation(s)
- Manjur O. Akram
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune 411 008
- India
| | - Somsuvra Banerjee
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune 411 008
- India
| | - Sagar S. Saswade
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| | - Vaibhav Bedi
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| | - Nitin T. Patil
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| |
Collapse
|
20
|
Caramenti P, Waser J. Bench-Stable Electrophilic Indole and Pyrrole Reagents: Serendipitous Discovery and Use in C-H Functionalization. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paola Caramenti
- Laboratory of Catalysis and Organic Synthesis; Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; Av. Forel 2 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis; Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO; Av. Forel 2 1015 Lausanne Switzerland
| |
Collapse
|
21
|
Almasalma AA, Mejía E. 1-Phenyl-1,2-benziodoxol-3-(1H
)-one as Synthon for Phthalide Synthesis through Pd-Free, Base-Free, Sonogashira-Type Coupling Cyclization Reaction. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmad A. Almasalma
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Esteban Mejía
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|