Munir R, Zahoor AF, Anjum MN, Nazeer U, Haq AU, Mansha A, Chaudhry AR, Irfan A. Synthesis And Photovoltaic Performance of Carbazole (Donor) Based Photosensitizers in Dye-Sensitized Solar Cells (DSSC): A Review.
Top Curr Chem (Cham) 2024;
383:5. [PMID:
39738993 DOI:
10.1007/s41061-024-00488-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/22/2024] [Indexed: 01/02/2025]
Abstract
Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push-pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile. Additionally, acceptors (A) employed in the designs include cyanoacrylic acids, carboxylic acids, malononitrile, rhodanine-3-acetic acid, 4-aminobenzoic acid, or 4-amino salicylic acid. This comprehensive review explores the synthesis and photovoltaic performances of numerous carbazole-based photosensitizers tailored for dye-sensitized solar cells, covering the period of 2019-2023.
Collapse