1
|
Thiel F, Palencia C, Weller H. Kinetic Analysis of the Cation Exchange in Nanorods from Cu 2-xS to CuInS 2: Influence of Djurleite's Phase Transition Temperature on the Mechanism. ACS NANO 2023; 17:3676-3685. [PMID: 36749683 DOI: 10.1021/acsnano.2c10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the syntheses of ternary I-III-VI2 compounds, such as CuInS2, it is often difficult to balance three precursor reactivities to achieve the desired size, shape, and atomic composition of nanocrystals. Cation exchange reactions offer an attractive two-step alternative, by producing a binary compound with the desired morphology and incorporating another atomic species postsynthetically. However, the kinetics of such cation exchange reactions, especially for anisotropic nanocrystals, are still not fully understood. Here, we present the cation exchange reaction from Cu-deficient djurleite Cu2-xS nanorods to wurtzite CuInS2, with size and shape retention. With reaction parameters in a broad temperature range between 40 °C and 160 °C, we were able to obtain various intermediates. Djurleite has a bulk phase transition temperature at 93 °C, which influences the cation exchange considerably. Below the phase transition temperature, indium is only incorporated into the surface of the nanorods, while, at temperatures above the phase transition temperature, we observe a Janus-type exchange mechanism and the formation of CuInS2 bands in the djurleite nanorods. The findings suggest that the diffusion above the phase transition temperature is strongly favored along the copper planes of the copper sulfide nanorods over the diffusion through the sulfur planes. This results in a difference of 37 kJ mol-1 in the activation energy of the cation exchange below and above the phase transition temperature.
Collapse
Affiliation(s)
- Felix Thiel
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Cristina Palencia
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Horst Weller
- Department of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Fraunhofer-CAN, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Xia C, van Oversteeg CHM, Bogaards VCL, Spanjersberg THM, Visser NL, Berends AC, Meeldijk JD, de Jongh PE, de Mello Donega C. Synthesis and Formation Mechanism of Colloidal Janus-Type Cu 2-xS/CuInS 2 Heteronanorods via Seeded Injection. ACS NANO 2021; 15:9987-9999. [PMID: 34110780 PMCID: PMC8291760 DOI: 10.1021/acsnano.1c01488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Colloidal heteronanocrystals allow for the synergistic combination of properties of different materials. For example, spatial separation of the photogenerated electron and hole can be achieved by coupling different semiconductors with suitable band offsets in one single nanocrystal, which is beneficial for improving the efficiency of photocatalysts and photovoltaic devices. From this perspective, axially segmented semiconductor heteronanorods with a type-II band alignment are particularly attractive since they ensure the accessibility of both photogenerated charge carriers. Here, a two-step synthesis route to Cu2-xS/CuInS2 Janus-type heteronanorods is presented. The heteronanorods are formed by injection of a solution of preformed Cu2-xS seed nanocrystals in 1-dodecanethiol into a solution of indium oleate in oleic acid at 240 °C. By varying the reaction time, Janus-type heteronanocrystals with different sizes, shapes, and compositions are obtained. A mechanism for the formation of the heteronanocrystals is proposed. The first step of this mechanism consists of a thiolate-mediated topotactic, partial Cu+ for In3+ cation exchange that converts one of the facets of the seed nanocrystals into CuInS2. This is followed by homoepitaxial anisotropic growth of wurtzite CuInS2. The Cu2-xS seed nanocrystals also act as sacrificial Cu+ sources, and therefore, single composition CuInS2 nanorods are eventually obtained if the reaction is allowed to proceed to completion. The two-stage seeded growth method developed in this work contributes to the rational synthesis of Cu2-xS/CuInS2 heteronanocrystals with targeted architectures by allowing one to exploit the size and faceting of premade Cu2-xS seed nanocrystals to direct the growth of the CuInS2 segment.
Collapse
Affiliation(s)
- Chenghui Xia
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Christina H. M. van Oversteeg
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Veerle C. L. Bogaards
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Tim H. M. Spanjersberg
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Nienke L. Visser
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Anne C. Berends
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
3
|
One-step Na2S2O3-activation strategy on the construction of CoS–Co(OH)2 nanoflakes@Cu31S16 microrod architectures for alkaline overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|