1
|
Chithra KR, Rao SM, Varsha MV, Nageswaran G. Bimetallic Metal-Organic Frameworks (BMOF) and BMOF- Incorporated Membranes for Energy and Environmental Applications. Chempluschem 2023; 88:e202200420. [PMID: 36795938 DOI: 10.1002/cplu.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Bimetallic metal organic frameworks (BMOFs) are a class of crystalline solids and their structure comprises two metal ions in the lattice. BMOFs show a synergistic effect of two metal centres and enhanced properties compared to MOFs. By controlling the composition and relative distribution of two metal ions in the lattice the structure, morphology, and topology of BMOFs could be regulated resulting in an improvement in the tunability of pore structure, activity, and selectivity. Thus, developing BMOFs and BMOF incorporated membranes for applications such as adsorption, separation, catalysis, and sensing is a promising strategy to mitigate environmental pollution and address the looming energy crisis. Herein we present an overview of recent advancements in the area of BMOFs and a comprehensive review of BMOF incorporated membranes reported to date. The scope, challenges as well as future perspectives for BMOFs and BMOF incorporated membranes are presented.
Collapse
Affiliation(s)
- K R Chithra
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - Shashank M Rao
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - M V Varsha
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| | - Gomathi Nageswaran
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvanthapuram, Kerala, India
| |
Collapse
|
2
|
Liang R, Liu N, Li F. Recent Advances of Anticancer Studies Based on Nano-Fluorescent Metal-Organic Frameworks. ChemMedChem 2022; 17:e202200480. [PMID: 36220780 DOI: 10.1002/cmdc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
3
|
Ibikunle IA, Yang Y, Valdez NR, Rodriguez MA, Harvey JA, Sava Gallis DF, Sholl DS. Trends in Siting of Metals in Heterometallic Nd-Yb Metal-Organic Frameworks and Molecular Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54349-54358. [PMID: 36399403 DOI: 10.1021/acsami.2c15638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Several studies suggest that metal ordering within metal-organic frameworks (MOFs) is important for understanding how MOFs behave in relevant applications; however, these siting trends can be difficult to determine experimentally. To garner insight into the energetic driving forces that may lead to nonrandom ordering within heterometallic MOFs, we employ density functional theory (DFT) calculations on several bimetallic metal-organic crystals composed of Nd and Yb metal atoms. We also investigate the metal siting trends for a newly synthesized MOF. Our DFT-based energy of mixing results suggest that Nd will likely occupy sites with greater access to electronegative atoms and that local homometallic domains within a mixed-metal Nd-Yb system are favored. We also explore the use of less computationally extensive methods such as classical force fields and cluster expansion models to understand their feasibility for large system sizes. This study highlights the impact of metal ordering on the energetic stability of heterometallic MOFs and crystal structures.
Collapse
Affiliation(s)
- Ifayoyinsola A Ibikunle
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Yuhan Yang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Nichole R Valdez
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark A Rodriguez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jacob A Harvey
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Ma LN, Wang GD, Hou L, Zhu Z, Wang YY. Efficient One-Step Purification of C 1 and C 2 Hydrocarbons over CO 2 in a New CO 2-Selective MOF with a Gate-Opening Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26858-26865. [PMID: 35642726 DOI: 10.1021/acsami.2c06744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Removing CO2 impurity is an essential industrial process in the purification of hydrocarbons. The most promising strategy is the one-step collection of high-purity hydrocarbons by employing CO2-selective adsorbents, which requires improving the CO2 adsorption and separation behavior of adsorbents, especially the low-pressure performance under actual industrial conditions. Herein, we constructed a new flexible metal-organic framework [Zn(odip)0.5(bpe)0.5(CH3OH)]·0.5NMF·H2O (1) (H4odip = 5,5'-oxydiisophthalic acid, bpe = 1,2-bi(4-pyridyl)ethylene, and NMF = N-methylformamide) containing rich ether O adsorption sites in the channels that exhibits remarkable adsorption capacity for CO2 (118.7 cm3 g-1) due to the only gate-opening-type abrupt adsorption of CO2 at room temperature. Its low affinity for other competing gases enables it to deliver high selectivity for the adsorption of CO2 over C1 and C2 hydrocarbons. For equimolar mixtures of CO2-CH4 and CO2-C2H2, the selectivities are 376.0 and 13.2, respectively. Molecular simulations disclose more abundant adsorption sites for CO2 than hydrocarbons in 1. The breakthrough separation performances combined with remarkable stability and recyclability further verify that 1 is a promising adsorbent that can efficiently extract high-purity hydrocarbons through selective capture of CO2.
Collapse
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
5
|
Gildenast H, Gruszien L, Friedt F, Englert U. Phosphorus or Nitrogen - The first Phosphatriptycene in Coordination Polymer Chemistry. Dalton Trans 2022; 51:7828-7837. [DOI: 10.1039/d2dt00728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphasilatriptycene, a phenylene spacer and a pyridyl moiety represent the building blocks of TRIP-Py, the first heteroditopic ligand featuring a phoshatriptycene scaffold. The P and N donor sites located at...
Collapse
|
6
|
Whelan É, Steuber FW, Gunnlaugsson T, Schmitt W. Tuning photoactive metal–organic frameworks for luminescence and photocatalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Hawes CS. Coordination sphere hydrogen bonding as a structural element in metal-organic Frameworks. Dalton Trans 2021; 50:6034-6049. [PMID: 33973587 DOI: 10.1039/d1dt00675d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the design of new metal-organic frameworks, the constant challenges of framework stability and structural predictability continue to influence ligand choice in favour of well-studied dicarboxylates and similar ligands. However, a small subset of known MOF ligands contains suitable functionality for coordination sphere hydrogen bonding which can provide new opportunities in ligand design. Such interactions may serve to support and rigidity the coordination geometry of mononuclear coordination spheres, as well as providing extra thermodynamic and kinetic stabilisation to meet the challenge of hydrolytic stability in these materials. In this perspective, a collection of pyrazole, amine, amide and carboxylic acid containing species are examined through the lens of (primarily) inner-sphere hydrogen bonding. The influence of these interactions is then related to the overall structure, stability and function of these materials, to provide starting points for harnessing these interactions in future materials design.
Collapse
Affiliation(s)
- Chris S Hawes
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK.
| |
Collapse
|
8
|
Chen L, Wang HF, Li C, Xu Q. Bimetallic metal-organic frameworks and their derivatives. Chem Sci 2020; 11:5369-5403. [PMID: 34094065 PMCID: PMC8159423 DOI: 10.1039/d0sc01432j] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bimetallic metal-organic frameworks (MOFs) have two different metal ions in the inorganic nodes. According to the metal distribution, the architecture of bimetallic MOFs can be classified into two main categories namely solid solution and core-shell structures. Various strategies have been developed to prepare bimetallic MOFs with controlled compositions and structures. Bimetallic MOFs show a synergistic effect and enhanced properties compared to their monometallic counterparts and have found many applications in the fields of gas adsorption, catalysis, energy storage and conversion, and luminescence sensing. Moreover, bimetallic MOFs can serve as excellent precursors/templates for the synthesis of functional nanomaterials with controlled sizes, compositions, and structures. Bimetallic MOF derivatives show exposed active sites, good stability and conductivity, enabling them to extend their applications to the catalysis of more challenging reactions and electrochemical energy storage and conversion. This review provides an overview of the significant advances in the development of bimetallic MOFs and their derivatives with special emphases on their preparation and applications.
Collapse
Affiliation(s)
- Liyu Chen
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Hao-Fan Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Caixia Li
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| |
Collapse
|
9
|
Wang P, Zhang L, Zhu Z, Wu S, Shan L, Fan Y, Wang L, Chen X, Xu J. Two three-dimensional Sc(III)-MOFs: Synthesis, crystal structure and catalytic property. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Gildenast H, Nölke S, Englert U. 3-(4-Methylthiophenyl)acetylacetone – ups and downs of flexibility in the synthesis of mixed metal–organic frameworks. Ditopic bridging of hard and soft cations and site-specific desolvation. CrystEngComm 2020. [DOI: 10.1039/c9ce01932d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Different Pearson-hardness of O and S donors leads to well-ordered mixed metal–organic frameworks.
Collapse
Affiliation(s)
- Hans Gildenast
- RWTH Aachen University
- Institute of Inorganic Chemistry
- 52074 Aachen
- Germany
| | - Stephanie Nölke
- RWTH Aachen University
- Institute of Inorganic Chemistry
- 52074 Aachen
- Germany
| | - Ulli Englert
- RWTH Aachen University
- Institute of Inorganic Chemistry
- 52074 Aachen
- Germany
- Key Laboratory of Materials for Energy Conversion and Storage
| |
Collapse
|
11
|
Ma L, Liu Y, Li Y, Hu Q, Hou L, Wang Y. Three Lanthanide Metal‐Organic Frameworks Based on an Ether‐Decorated Polycarboxylic Acid Linker: Luminescence Modulation, CO
2
Capture and Conversion Properties. Chem Asian J 2019; 15:191-197. [DOI: 10.1002/asia.201901506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/28/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Li‐Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
- Shaanxi Institute of International Trade& Commerce Xi'an 712046 P. R. China
| | - Yong‐Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Qi‐Xuan Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| | - Yao‐Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of EducationNational Demonstration Center for Experimental Chemistry Education (Northwest University)College of Chemistry & Materials ScienceNorthwest University Xi'an 710127 P. R. China
| |
Collapse
|
12
|
Lanthanide(III) coordination polymers constructed from 2,2- and 3,3-dimethylglutarate ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Liu Y, Ma LN, Shi WJ, Lu YK, Hou L, Wang YY. Four alkaline earth metal (Mg, Ca, Sr, Ba)-based MOFs as multiresponsive fluorescent sensors for Fe3+, Pb2+ and Cu2+ ions in aqueous solution. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Abdallah A, Daiguebonne C, Suffren Y, Rojo A, Demange V, Bernot K, Calvez G, Guillou O. Microcrystalline Core–Shell Lanthanide-Based Coordination Polymers for Unprecedented Luminescent Properties. Inorg Chem 2018; 58:1317-1329. [DOI: 10.1021/acs.inorgchem.8b02815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmad Abdallah
- Univ Rennes, INSA Rennes,
CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35000 Rennes, France
| | - Carole Daiguebonne
- Univ Rennes, INSA Rennes,
CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35000 Rennes, France
| | - Yan Suffren
- Univ Rennes, INSA Rennes,
CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35000 Rennes, France
| | - Amandine Rojo
- Univ Rennes, INSA Rennes,
CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35000 Rennes, France
| | - Valérie Demange
- Univ Rennes, INSA Rennes,
CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35000 Rennes, France
| | - Kevin Bernot
- Univ Rennes, INSA Rennes,
CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35000 Rennes, France
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes,
CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35000 Rennes, France
| | - Olivier Guillou
- Univ Rennes, INSA Rennes,
CNRS UMR 6226, Institut des Sciences Chimiques de Rennes, F-35000 Rennes, France
| |
Collapse
|