1
|
Deng J, Liu W, Gao L, Jia T, He Y, Mao T, Hussain J. A Review of Distribution and Profiles of HBCD in Different Environmental Media of China. Molecules 2023; 29:36. [PMID: 38202620 PMCID: PMC10779568 DOI: 10.3390/molecules29010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hexabromocyclododecane (HBCD) is the most important flame retardant that has been used in Expanded Polystyrene foam and Extruded Polystyrene foam in the past forty years across the world. China was the major producer and user of HBCD, and the total HBCD production was about 0.3 million tons. Although HBCD was completely banned in China in 2021 because of its long-range transport, bioaccumulation and toxicity, there is still a lot of residue in the environment. Therefore, we reviewed multiple studies concerning the distribution of HBCD in diverse environmental matrices, such as in the air, dust, soil, water, sediment, and biota. Results revealed that HBCD levels in different environments in China present geographical variation and were at a high level compared with other countries. In all environmental media, relatively high HBCD concentrations have been found in industrial and urban areas. Industrialization and urbanization are two important factors that influence the concentration and distribution of HBCD in the environment. In terms of isomer, γ-HBCD was the dominant isomer in soil, water, and sediment, while in the biota α-HBCD was the predominant isomer.
Collapse
Affiliation(s)
- Jinglin Deng
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Yunchen He
- Research Center for Eco-Environmental Sciences, Beijing 100085, China; (J.D.); (L.G.); (T.J.); (Y.H.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
| | - Javid Hussain
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; (T.M.); (J.H.)
- Department of Environmental Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87100, Pakistan
| |
Collapse
|
2
|
Gong H, Hu J, Rui X, Luo J, Zhu N. Unveiling the occurrence, distribution, removal, and environmental impacts of 65 emerging contaminants in neglected fresh leachate from municipal solid waste incineration plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132355. [PMID: 37651937 DOI: 10.1016/j.jhazmat.2023.132355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Emerging contaminants (ECs) are commonly found in environmental media. Yet leachate from municipal solid waste incineration plants (MSWIPs), which can serve as a reservoir for various contaminants, including ECs, has received little investigation. To address this gap, 65 ECs were analyzed in the fresh leachate and biological effluent from three major MSWIPs in Shanghai. Results indicated that over half (56%) of the 65 ECs were detected in fresh leachate. Different ECs would be removed to varying degrees after biological treatment, including polycyclic aromatic hydrocarbons (PAHs) (65%), polybrominated diphenyl ethers (PBDEs) (51%), phthalate esters (PAEs) (36%), and organophosphorus pesticides (OPPs) (34%). Notably, for tetrabromobisphenol A (TBBPA), a PBDE substitute, only 2% was removed after biological treatment, while polychlorinated biphenyls (PCBs) were effectively removed at 83%. Water solubility and the octanol-water partition coefficient are key factors influencing the distribution and removal of ECs in leachate. the effluent will still contain refractory ECs even after the biological treatment. These residual ECs discharged to sewers can impact wastewater treatment plants or contaminate surface water and groundwater. These findings provide insights into the leachate contamination by ECs, their environmental fate, factors affecting their behavior, and potential environmental impacts.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Tolosa I, Huertas D, Choyke S, Sander S, Aminot Y. A comprehensive evaluation of two sample treatment procedures for the determination of emerging and historical halogenated flame retardants in biota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59345-59357. [PMID: 33026620 PMCID: PMC8542007 DOI: 10.1007/s11356-020-10966-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/21/2020] [Indexed: 05/06/2023]
Abstract
Two different sample preparation protocols for the determination of 37 emerging and historical halogenated flame retardants (HFRs) in marine tissues were compared with regards to extraction recovery, lipid removal efficiency, repeatability, reproducibility, and ability to measure sub-ng g-1 (dry weight) concentrations in marine biota. One method involved a purification step using gel permeation chromatography (GPC) followed by a HPLC fractionation step on a Partisil amino-cyano normal phase (GPC-Partisil procedure) and the other more traditional method was based on sulphuric acid treatment followed by silica column fractionation (H2SO4-silica procedure). The samples were analysed by gas chromatography (GC) and liquid chromatography (LC) tandem mass spectrometry (MS/MS). Sample fractionation in both methods enabled unique sample preparation procedures to isolate the GC from the LC amenable compounds. Both methods could remove > 99% of the lipids which was necessary prior to GC- and LC-MS/MS analyses. The majority of the target compounds (70%) had acceptable recoveries between 60-120% for both methods. However, the sulphuric acid treatment resulted in the degradation of the TBP-AE and the silica column fractionation resulted in the loss of BEH-TEBP and the elution of PBB-Acr and TBBPA-BME in the unsuitable fraction. High recoveries of DBE-DBCH (α+β), EHTBB, BTBPE, BEH-TEBP, and PBB-Acr were attributed to matrix effects, suggesting the need to use isotope-labelled surrogate standards of the target compounds. The optimisation of the silica column chromatography, GPC, and Partisil fractionation is described and discussed to afford easy implementation of the method. The method using GPC followed by Partisil fractionation is more efficient and more reproducible than the sulphuric acid-silica procedure. The application of this method to marine biota reference materials revealed the presence of relatively high concentrations of DBE-DBCH isomers and BDE-47 in fish samples. The method detection limits comply with the recommendations of the European Commission.
Collapse
Affiliation(s)
- Imma Tolosa
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of Monaco.
| | - David Huertas
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Sarah Choyke
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Sylvia Sander
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Yann Aminot
- IAEA Environment Laboratories, 4a Quai Antoine 1er, 98000, Monaco, Principality of Monaco
- IFREMER, Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| |
Collapse
|
4
|
Hou X, Wei L, Tang Y, Kong W, Liu J, Schnoor JL, Jiang G. Two Typical Glycosylated Metabolites of Tetrabromobisphenol A Formed in Plants: Excretion and Deglycosylation in Plant Root Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:313-319. [PMID: 34805424 PMCID: PMC8603600 DOI: 10.1021/acs.estlett.1c00084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The glycosylation process was investigated for the common brominated flame retardant tetrabromobisphenol A (TBBPA) in hydroponic exposure systems with pumpkin seedlings. Two typical glycosylation metabolites of TBBPA formed in pumpkin seedlings, TBBPA mono-β-d-glucopyranoside (TBBPA MG) and TBBPA di-β-d-glucopyranoside (TBBPA DG), increasing their mass early in the exposure (reaching maximum masses of 608 ± 53 and 3806 ± 1570 pmol at 12 h, respectively) and then falling throughout exposure. These two metabolites were released from roots to rhizosphere solutions, where they also exhibited initial increases followed by decreasing trends (reaching maximum masses of 595 ± 272 pmol at 3 h and 77.1 ± 36.0 pmol at 6 h, respectively). However, a (pseudo)zero-order deglycosylation of TBBPA MG and TBBPA DG (during the first 1.5 h) back to TBBPA was unexpectedly detected in the hydroponic solutions containing pumpkin exudates and microorganisms. The function of microorganisms in the solutions was further investigated, revealing that the microorganisms were main contributors to deglycosylation. Plant detoxification through glycosylation and excretion, followed by deglycosylation of metabolites back to the toxic parent compound (TBBPA) in hydroponic solutions, provides new insight into the uptake, transformation, and environmental fate of TBBPA and its glycosylated metabolites in plant/microbial systems.
Collapse
Affiliation(s)
- Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment and Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment and Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Li H, Hu Y, Sun Y, De Silva AO, Muir DCG, Wang W, Xie J, Xu X, Pei N, Xiong Y, Luo X, Mai B. Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City, South China. ENVIRONMENT INTERNATIONAL 2019; 129:239-246. [PMID: 31146158 DOI: 10.1016/j.envint.2019.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Brominated flame retardants (BFRs) such as tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) are of ecological concern due to their ubiquitous presence and adverse effects. There is a paucity of data on environmental fate of such compounds in mangrove wetlands, which are unique ecosystems in coastal intertidal areas and act as natural sinks for many pollutants. In this study, mangrove plants and sediments were collected from an urban nature reserve in South China to investigate bioaccumulation and translocation of TBBPA and HBCDs. The mean (range) concentrations of TBBPA and ΣHBCD in roots, stems and leaves were 67 (<MDL-999), 174 (0.73-1105) and 20 (0.59-250) pg/g dry weight (dw), and 329 (15.6-2234), 766 (32.9-3255) and 298 (19.9-1520) pg/g dw, respectively. Tissue-specific accumulations were observed, varying with plant species and compounds. HBCD diastereoisomer patterns were similar for all plant species. γ-HBCD was the major diastereoisomer in roots, while α-HBCD dominated in stems and leaves. The predominance of α-HBCD in aboveground tissues may be ascribed to diastereoisomer-specific translocation, isomerization and/or metabolization in mangrove plants. Preferential enrichment of (-)-α-, (-)-β- and (+)-γ-HBCDs was found in all mangrove plant tissues, suggesting the enantioselectivity for HBCDs in mangrove plants. Translocation factors (log TF, root to stem) of HBCD diastereoisomers and log Kow were negatively correlated (p = 0.03), indicating passive translocation of HBCDs, driven by water movement during transpiration. Sediment-root bioaccumulation factors and log TFs (stem to leaf) both showed no obvious correlation with log Kow of HBCD diastereoisomers. These results reflected the complex behavior of HBCDs in mangrove plants, which have not been sufficiently captured in laboratory-based studies of plant contaminant accumulation.
Collapse
Affiliation(s)
- Huawei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxia Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuxin Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington L7S 1A1, Canada.
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington L7S 1A1, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington L7S 1A1, Canada
| | - Weiwei Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinli Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangrong Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Nancai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Yanmei Xiong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|