van de Meent D, de Zwart D, Posthuma L. Screening-Level Estimates of Environmental Release Rates, Predicted Exposures, and Toxic Pressures of Currently Used Chemicals.
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020;
39:1839-1851. [PMID:
32539202 PMCID:
PMC7496123 DOI:
10.1002/etc.4801]
[Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 05/27/2023]
Abstract
We describe a procedure to quantify emissions of chemicals for environmental protection, assessment, and management purposes. The procedure uses production and use volumes from registration dossiers and combines these with Specific Environmental Release Category data. The procedure was applied in a case study. Emission estimations were made for chemicals registered under the European Union chemicals regulations for industrial chemicals (Registration, Evaluation, Authorisation and Restriction of Chemicals [REACH]) and for the active ingredients of medicines and crop protection products. Emissions themselves cannot be validated. Instead, emission estimates were followed by multimedia fate modeling and mixture toxic pressure modeling to arrive at predicted environmental concentrations (PECs) and toxic pressures for a typical European water body at steady state, which were compared with other such data. The results show that screening-level assessments could be performed, and yielded estimates of emissions, PECs, and mixture toxic pressures of chemicals used in Europe. Steady-state PECs agreed fairly well with measured concentrations. The mixture toxic pressure at steady state suggests the presence of effects in aquatic species assemblages, whereby few compounds dominate the predicted impact. The study shows that our screening-level emission estimation procedure is sufficiently accurate and precise to serve as a basis for assessment of chemical pollution in aquatic ecosystems at the scale of river catchments. Given a recognized societal need to develop methods for realistic, cumulative exposures, the emission assessment procedure can assist in the prioritization of chemicals in safety policies (such as the European Union REACH regulation), where "possibility to be used safely" needs to be demonstrated, and environmental quality policies (such as the European Union Water Framework Directive), where "good environmental quality" needs to be reached. Environ Toxicol Chem 2020;39:1839-1851. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse