1
|
Qin D, Liu Y, Yang R, Li J, Hu C. Complete Low-Temperature Transformation and Dissolution of the Three Main Components in Corn Straw. ChemistryOpen 2023; 12:e202200247. [PMID: 36722831 PMCID: PMC9891121 DOI: 10.1002/open.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Indexed: 02/02/2023] Open
Abstract
The conversion of biomass faces the challenge of mass and heat transfer, as well as the exertion of heterogeneous catalyst, because raw biomass exists usually in solid state. In this work, the simultaneous transformation and dissolution of the three main components (hemicellulose, cellulose, lignin) in corn straw were achieved in ethanol/ valerolactone (GVL)/H2 O (10 : 10 : 40, v/v/v) co-solvent system. With the assistance of AlCl3 ⋅ 6H2 O, the conversion of hemicellulose, lignin and cellulose was >96 % at 170 °C. The conversion of solid biomass into fluid, overcoming the mass transfer restrictions between solid biomass and solid catalysts, provides new raw materials to further upgrading. H2 O could penetrate inside the crystalline cellulose to swell even dissolve it, while ethanol and GVL acted as media to dissolve especially the G unit in lignin. The H+ derived from AlCl3 ⋅ 6H2 O hydrolysis could break the linkages of lignin-hemicellulose and glycosidic bond in saccharides, and aluminum chloride promoted the next degradation of polysaccharides to small molecules. Consequently, as high as 33.2 % yield of levulinic acid and 42.2 % yield of furfural were obtained. The cleavage of β-O-4 and Cβ -Cγ bonds in lignin produced large amounts of lignin-derived dimers and trimers. The total yield of monomeric phenols is up to 8 %.
Collapse
Affiliation(s)
- Diyan Qin
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| | - Yancheng Liu
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| | - Ruofeng Yang
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| | - Jianmei Li
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology Ministry of Education College of ChemistrySichuan University ChengduSichuan610064P. R. China
| |
Collapse
|
2
|
Zhou Y, Liu L, Li M, Hu C. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126371. [PMID: 34838628 DOI: 10.1016/j.biortech.2021.126371] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Algae are considered promising biomass resources for biofuel production. However, some arguments doubt the economical and energetical feasibility of algal cultivation, harvesting, and conversion processes. Beyond biofuel, value-added bioproducts can be generated via algae conversion, which would enhance the economic feasibility of algal biorefineries. This review primarily focuses on valuable chemical and bioproduct production from algae. The methods for effective recovery of valuable algae components, and their applications are summarized. The potential routes for the conversion of lipids, carbohydrates, and proteins to valuable chemicals and bioproducts are assessed from recent studies. In addition, this review proposes the following challenges for future algal biorefineries: (1) utilization of naturally grown algae instead of cultivated algae; (2) fractionation of algae to individual components towards high-selectivity products; (3) avoidance of humin formation from algal carbohydrate conversion; (4) development of strategies for algal protein utilisation; and (5) development of efficient processes for commercialization and industrialization.
Collapse
Affiliation(s)
- Yingdong Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Li Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Mingyu Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
3
|
A Mini Review on Pyrolysis of Natural Algae for Bio-Fuel and Chemicals. Processes (Basel) 2021. [DOI: 10.3390/pr9112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The disposal and use of natural algae have recently been the subject of great interest, due to increasing concern for environmental protection and resource utilization. In this paper, a mini review of recent research on the pyrolysis of natural algae, especially the algae from water blooms, is presented. The chemical compositions of the natural algae are summarized, and the pyrolysis properties of different compositions are reviewed. Non-catalytic, catalytic, and integrated catalytic processes are reviewed. Different ideas and methods for the production of bio-fuel or chemicals are discussed. Apparently, deoxygenation and denitrogenation are highly necessary for algae-based bio-fuel and catalysts play an important role in these processes. In addition, the integrated catalytic process, which involves catalysis and other operation conditions aside from the thermal treatment under inert atmosphere, shows potential for the valorization of algae-based bio-oil. Based on the recent concept and progress, the research gaps are discussed, followed by the challenges and proposals to achieve high-value utilization of the natural algae.
Collapse
|
4
|
Liu L, Zhou Y, Guo L, Li G, Hu C. Production of Nitrogen-Containing Compounds via the Conversion of Natural Microalgae from Water Blooms Catalyzed by ZrO 2. CHEMSUSCHEM 2021; 14:3935-3944. [PMID: 34390212 DOI: 10.1002/cssc.202101162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Utilizing the inherent high nitrogen content in natural microalgae to produce value-added nitrogen-containing compounds such as fatty amides and fatty nitriles is a promising method. Herein, a method for producing value-added fatty amides and nitriles by liquefaction of natural microalgae from water blooms in n-heptane was developed. The effects of temperature, metal oxide catalyst (ZrO2 , Al2 O3 , TiO2 , ZnO, MgO, CaO), catalyst amount, and reaction time on the preparation of value-added nitrogen-containing compounds were studied. Under the optimized conditions (0.3 g ZrO2 , 300 °C, 6 h), the total yield of fatty amides was 6.9 wt %, and the yield of fatty nitriles was 1.9 wt %. Compared with the results obtained in the absence of ZrO2 , after adding ZrO2 the total yield of fatty acids was reduced by 4.7 wt % (18.5 to 13.8 wt %), while the total yield of fatty amides only increased by 0.9 wt % (6.0 to 6.9 wt %) and fatty nitriles was increased by 1.5 wt % (0.4 to 1.9 wt %). Exploring the role of ZrO2 by using model compounds (i. e., palmitic acid and palmitamide) revealed that ZrO2 could promote the dehydration of fatty amides to form fatty nitriles, but had limited effect on the reaction of fatty acid and NH3 .
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Yingdong Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Lixian Guo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Guiying Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
5
|
Conversion of saccharides in enteromorpha prolifera to furfurals in the presence of FeCl3. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Catalytic Thermochemical Conversion of Algae and Upgrading of Algal Oil for the Production of High-Grade Liquid Fuel: A Review. Catalysts 2020. [DOI: 10.3390/catal10020145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The depletion of fossil fuel has drawn growing attention towards the utilization of renewable biomass for sustainable energy production. Technologies for the production of algae derived biofuel has attracted wide attention in recent years. Direct thermochemical conversion of algae obtained biocrude oil with poor fuel quality due to the complex composition of algae. Thus, catalysts are required in such process to remove the heteroatoms such as oxygen, nitrogen, and sulfur. This article reviews the recent advances in catalytic systems for the direct catalytic conversion of algae, as well as catalytic upgrading of algae-derived oil or biocrude into liquid fuels with high quality. Heterogeneous catalysts with high activity in deoxygenation and denitrogenation are preferable for the conversion of algae oil to high-grade liquid fuel. The paper summarized the influence of reaction parameters and reaction routes for the catalytic conversion process of algae from critical literature. The development of new catalysts, conversion conditions, and efficiency indicators (yields and selectivity) from different literature are presented and compared. The future prospect and challenges in general utilization of algae are also proposed.
Collapse
|
7
|
Shen Y. Fractionation of biomass and plastic wastes to value-added products via stepwise pyrolysis: a state-of-art review. REV CHEM ENG 2019. [DOI: 10.1515/revce-2019-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Pyrolysis has been considered as a promising thermochemical process that can convert biomass in nonoxidizing atmospheres to value-added liquid bio-oil, solid biochar, and noncondensable gas products. Fast pyrolysis has a better economic return because of the valuable biofuel production (e.g. bio-oil, syngas). Because of the complexity and heterogeneity of the feedstocks, the one-step pyrolysis often leads to the mixed, acidic, and highly oxygenated liquid products. Moreover, the downstream processes (e.g. deoxygenation) for the desired fuels require high costs on energy and catalysts consumption. Stepwise pyrolysis is defined as a temperature-programmed pyrolysis that can separately obtain the products from each temperature step. It is a feasible approach to accomplish the fractionation by optimizing the pyrolysis process based on the decomposition temperature ranges and products among the biomass constituents. In recent years, the stepwise pyrolysis technology has gained attentions in thermochemical conversion of complex organic solid wastes. Through the stepwise pyrolysis of a real waste, oxygenated and acidic products were concentrated in the first-step liquid product, whereas the second-step product normally contained a high portion of hydrocarbon with low acidity. The stepwise pyrolysis of biomass, plastics, and their mixtures is comprehensively reviewed with the objective of fully understanding the related mechanisms, influence factors, and challenges.
Collapse
Affiliation(s)
- Yafei Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering , Nanjing University of Information Science and Technology (NUIST) , Nanjing 210044 , China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, NUIST , Nanjing 210044 , China , e-mail:
| |
Collapse
|