1
|
Zang W, Lee J, Tieu P, Yan X, Graham GW, Tran IC, Wang P, Christopher P, Pan X. Distribution of Pt single atom coordination environments on anatase TiO 2 supports controls reactivity. Nat Commun 2024; 15:998. [PMID: 38307931 PMCID: PMC10837418 DOI: 10.1038/s41467-024-45367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2 supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2 are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.
Collapse
Affiliation(s)
- Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - George W Graham
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ich C Tran
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA.
- Irvine Materials Research Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Heidari S, Balaghi SE, Sologubenko AS, Patzke GR. Economic Manganese-Oxide-Based Anodes for Efficient Water Oxidation: Rapid Synthesis and In Situ Transmission Electron Microscopy Monitoring. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sima Heidari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S. Esmael Balaghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Alla S. Sologubenko
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
3
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Woehl T. Refocusing in Situ Electron Microscopy: Moving beyond Visualization of Nanoparticle Self-Assembly To Gain Practical Insights into Advanced Material Fabrication. ACS NANO 2019; 13:12272-12279. [PMID: 31738051 DOI: 10.1021/acsnano.9b08281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite incredible progress in preparing extended nanoparticle superlattices by self-assembly, theoretically predicted collective properties of extended nanoparticle superlattices are rarely correlated to observations due to the presence of defects. Enhanced fundamental understanding of the kinetics involved in nanoparticle superlattice self-assembly, specifically defect formation and annealing kinetics and mechanisms, is needed to prepare defect-free nanoparticle superlattices. In situ transmission electron microscopy (TEM) enables direct visualization of nanoparticle self-assembly phenomena in real time and at atomic spatial resolution; however, effective translation of in situ TEM data into new predictive models and material synthesis design rules remains a persistent challenge. Recent work by Ondry et al. in this issue of ACS Nano utilized atomic resolution in situ TEM to establish defect removal kinetics in epitaxially attached CdSe nanocrystal pairs, revealing a set of practical guidelines for minimizing defect formation in extended nanoparticle solids. Motivated by this work, in this Perspective, I explore and discuss the most effective and impactful uses of in situ TEM for nanoscience research and the associated technical barriers for performing in situ TEM measurements that are meaningful to bulk-scale self-assembly experiments.
Collapse
Affiliation(s)
- Taylor Woehl
- Department of Chemical and Biomolecular Engineering , University of Maryland , College Park , Maryland 20740 , United States
| |
Collapse
|
5
|
Friend CM, Xu F. Perspectives on the design of nanoparticle systems for catalysis. Faraday Discuss 2019; 208:595-607. [PMID: 30116826 DOI: 10.1039/c8fd00124c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview of the Faraday Discussion, "Designing Nanoparticle Systems for Catalysis", is presented. Examples are taken from the papers presented at the meeting and from the literature to illustrate the main discussion points.
Collapse
Affiliation(s)
- Cynthia M Friend
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford St., Cambridge, MA 02138, USA.
| | | |
Collapse
|
6
|
Beinik I, Bruix A, Li Z, Adamsen KC, Koust S, Hammer B, Wendt S, Lauritsen JV. Water Dissociation and Hydroxyl Ordering on Anatase TiO_{2}(001)-(1×4). PHYSICAL REVIEW LETTERS 2018; 121:206003. [PMID: 30500259 DOI: 10.1103/physrevlett.121.206003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/08/2018] [Indexed: 06/09/2023]
Abstract
We studied the interaction of water with the anatase TiO_{2}(001) surface by means of scanning tunneling microscopy, x-ray photoelectron spectroscopy, and density functional theory calculations. Water adsorbs dissociatively on the ridges of a (1×4) reconstructed surface, resulting in a (3×4) periodic structure of hydroxyl pairs. We observed this process at 120 K, and the created hydroxyls desorb from the surface by recombination to water, which occurs below 300 K. Our calculations reveal the water dissociation mechanism and uncover a very pronounced dependence on the coverage. This strong coverage dependence is explained through water-induced reconstruction on anatase TiO_{2}(001)-(1×4). The high intrinsic reactivity of the anatase TiO_{2}(001) surface towards water observed here is fundamentally different from that seen on other surfaces of titania and may explain its high catalytic activity in heterogeneous catalysis and photocatalysis.
Collapse
Affiliation(s)
- Igor Beinik
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Albert Bruix
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zheshen Li
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kræn C Adamsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stig Koust
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bjørk Hammer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stefan Wendt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|