1
|
Dong Y, Lemay JC, Zeng Y, Garcia JL, Groves MN, McBreen PH. Substrate Tumbling in a Chemisorbed Diastereomeric α‐Ketoester/1‐(1‐Naphthyl)ethylamine Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Dong
- Laval University: Universite Laval Department of Chemistry CANADA
| | | | - Yang Zeng
- Laval University: Universite Laval Department of Chemistry CANADA
| | - James L. Garcia
- California State University Fullerton Department of Chemistry and Biochemistry UNITED STATES
| | - Michael N. Groves
- California State University Fullerton Department of Chemistry and Biochemistry CANADA
| | | |
Collapse
|
2
|
Dong Y, Lemay JC, Zeng Y, Groves MN, McBreen PH. Substrate Tumbling in a Chemisorbed Diastereomeric α-Ketoester/1-(1-Naphthyl)ethylamine Complex. Angew Chem Int Ed Engl 2022; 61:e202210076. [PMID: 36087075 DOI: 10.1002/anie.202210076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Scanning tunneling microscopy (STM) data for α-ketoester/1-(1-naphthyl)ethylamine complexes on Pt(111) reveal a tumbling motion that couples two neighboring binding states. The interconversion, resulting in prochiral inversion of the α-ketoester, occurs in single complexes without breaking them apart. This is a surprising observation because the overall motion requires rotation of the α-ketoester away from the surface without branching exclusively into diffusion away from the complex or desorption. The multi-step interconversion is rationalized in terms of sequences of bound states that combine transient H-bond interactions with the chiral molecule and weakened adsorption interactions with the metal. The observation of tumbling in single long-lived complexes is of relevance to self-assembly and directed molecular motion on surfaces, to ligand-controlled surface reactions, and most directly to stereocontrol in asymmetric heterogeneous catalysis.
Collapse
Affiliation(s)
- Yi Dong
- CCVC and Department of Chemistry, Université Laval, Québec, Qc., G1V 0A6, Canada
| | - Jean-Christian Lemay
- CCVC and Department of Chemistry, Université Laval, Québec, Qc., G1V 0A6, Canada
| | - Yang Zeng
- CCVC and Department of Chemistry, Université Laval, Québec, Qc., G1V 0A6, Canada
| | - Michael N Groves
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA
| | - Peter H McBreen
- CCVC and Department of Chemistry, Université Laval, Québec, Qc., G1V 0A6, Canada
| |
Collapse
|
3
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Mier C, Verlhac B, Garnier L, Robles R, Limot L, Lorente N, Choi DJ. Superconducting Scanning Tunneling Microscope Tip to Reveal Sub-millielectronvolt Magnetic Energy Variations on Surfaces. J Phys Chem Lett 2021; 12:2983-2989. [PMID: 33730501 DOI: 10.1021/acs.jpclett.1c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Combining the complex ordering ability of molecules with their local magnetic properties is a little-explored technique to tailor spin structures on surfaces. However, revealing the molecular geometry can be demanding. Nickelocene (Nc) molecules present a large spin-flip excitation leading to clear changes of conductance at the excitation-threshold bias. Using a superconducting tip, we have the energy resolution to detect small shifts of the Nc spin-flip excitation thresholds, permitting us to reveal the different individual environments of Nc molecules in an ordered layer. This knowledge allows us to reveal the adsorption configuration of a complex molecular structure formed by Nc molecules in different orientations and positions. As a consequence, we infer that Nc layers present a strong noncollinear magnetic-moment arrangement.
Collapse
Affiliation(s)
- Cristina Mier
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Benjamin Verlhac
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Léo Garnier
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Laurent Limot
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Deung-Jang Choi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
5
|
Heideman GH, Berrocal JA, Stöhr M, Meijer EW, Feringa BL. Stepwise Adsorption of Alkoxy-Pyrene Derivatives onto a Lamellar, Non-Porous Naphthalenediimide-Template on HOPG. Chemistry 2021; 27:207-211. [PMID: 32893412 PMCID: PMC7821129 DOI: 10.1002/chem.202004008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 01/07/2023]
Abstract
The development of new strategies for the preparation of multicomponent supramolecular assemblies is a major challenge on the road to complex functional molecular systems. Here we present the use of a non-porous self-assembled monolayer from uC33 -NDI-uC33 , a naphthalenediimide symmetrically functionalized with unsaturated 33 carbon-atom-chains, to prepare bicomponent supramolecular surface systems with a series of alkoxy-pyrene (PyrOR) derivatives at the liquid/HOPG interface. While previous attempts at directly depositing many of these PyrOR units at the liquid/HOPG interface failed, the multicomponent approach through the uC33 -NDI-uC33 template enabled control over molecular interactions and facilitated adsorption. The PyrOR deposition restructured the initial uC33 -NDI-uC33 monolayer, causing an expansion in two dimensions to accommodate the guests. As far as we know, this represents the first example of a non-porous or non-metal complex-bearing monolayer that allows the stepwise formation of multicomponent supramolecular architectures on surfaces.
Collapse
Affiliation(s)
- G Henrieke Heideman
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - José Augusto Berrocal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.,Institute for Complex Molecular Systems and, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
6
|
Lemay JC, Dong Y, Albert V, Inouye M, Groves MN, Boukouvalas J, McBreen PH. Relative Abundances of Surface Diastereomeric Complexes Formed by Two Chiral Modifiers That Differ by a Methyl Group. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Yi Dong
- CCVC et Département de Chimie, Université Laval, Québec, Quebec G1V 0A6, Canada
| | - Vincent Albert
- CCVC et Département de Chimie, Université Laval, Québec, Quebec G1V 0A6, Canada
| | - Monica Inouye
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Michael N. Groves
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - John Boukouvalas
- CCVC et Département de Chimie, Université Laval, Québec, Quebec G1V 0A6, Canada
| | - Peter H. McBreen
- CCVC et Département de Chimie, Université Laval, Québec, Quebec G1V 0A6, Canada
| |
Collapse
|
7
|
Reaction selectivity of homochiral versus heterochiral intermolecular reactions of prochiral terminal alkynes on surfaces. Nat Commun 2019; 10:4122. [PMID: 31511503 PMCID: PMC6739358 DOI: 10.1038/s41467-019-12102-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/16/2019] [Indexed: 11/08/2022] Open
Abstract
Controlling selectivity between homochiral and heterochiral reaction pathways on surfaces remains a great challenge. Here, competing reactions of a prochiral alkyne on Ag(111): two-dimensional (2D) homochiral Glaser coupling and heterochiral cross-coupling with a Bergman cyclization step have been examined. We demonstrate control strategies in steering the reactions between the homochiral and heterochiral pathways by tuning the precursor substituents and the kinetic parameters, as confirmed by high-resolution scanning probe microscopy (SPM). Control experiments and density functional theory (DFT) calculations reveal that the template effect of organometallic chains obtained under specific kinetic conditions enhances Glaser coupling between homochiral molecules. In contrast, for the reaction of free monomers, the kinetically favorable reaction pathway is the cross-coupling between two heterochiral molecules (one of them involving cyclization). This work demonstrates the application of kinetic control to steer chiral organic coupling pathways at surfaces. Controlling selectivity between homochiral and heterochiral reaction pathways on surfaces is intriguing but challenging. Here, the authors demonstrate strategies in steering the reactions of prochiral terminal alkynes between the homochiral and heterochiral pathways by tuning the precursor substituents and the kinetic parameters.
Collapse
|
8
|
Seibel J, Amabilino DB, De Feyter S. Preferred Formation of Minority Concomitant Polymorphs in 2D Self‐Assembly under Lateral Nanoconfinement. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Seibel
- Department of Chemistry Division of Molecular Imaging and Photonics KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - David B. Amabilino
- School of Chemistry & The GSK Carbon Neutral Laboratories for Sustainable Chemistry The University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - Steven De Feyter
- Department of Chemistry Division of Molecular Imaging and Photonics KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
9
|
Seibel J, Amabilino DB, De Feyter S. Preferred Formation of Minority Concomitant Polymorphs in 2D Self‐Assembly under Lateral Nanoconfinement. Angew Chem Int Ed Engl 2019; 58:12964-12968. [DOI: 10.1002/anie.201908552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Johannes Seibel
- Department of Chemistry Division of Molecular Imaging and Photonics KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - David B. Amabilino
- School of Chemistry & The GSK Carbon Neutral Laboratories for Sustainable Chemistry The University of Nottingham Triumph Road Nottingham NG7 2TU UK
| | - Steven De Feyter
- Department of Chemistry Division of Molecular Imaging and Photonics KU Leuven—University of Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
10
|
Li BS, Huang X, Li H, Xia W, Xue S, Xia Q, Tang BZ. Solvent and Surface/Interface Effect on the Hierarchical Assemblies of Chiral Aggregation-Induced Emitting Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3805-3813. [PMID: 30767500 DOI: 10.1021/acs.langmuir.8b03358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The core of aggregation-induced emitting (AIE) molecules was their aggregation behavior. It was, in essence, a self-assembly process driven by noncovalent interactions, which were governed not only by the chemical structures of the molecules but also by the conditions where the self-assemblies were formed. The self-assemblies of two AIE molecules, tetraphenylethene (TPE) derivatives carrying one valine attachment (TPE-Val) and two valine attachments (TPE-2Val), were studied. Both kinds of molecules self-assembled into supramolecular helical fibers with different handedness upon the addition of poor solvent to their solution. However, when deposited on air/water interface, both kinds of molecules formed aligned elementary helical fibers instead of supramolecular fibers. The lateral solvophobic effect exerted by water molecules caused a shift of the original noncovalent balance between molecules and solvent; thus, the supramolecular helical assemblies were unraveled into aligned helical elementary fibers. Similar elementary assemblies were formed on the surface of 3-aminopropyl triethoxysilane-modified mica, confirming the lateral solvophobic effect on the self-assemblies of the molecules.
Collapse
Affiliation(s)
- Bing Shi Li
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan, Shenzhen 518055 , China
| | - Xuejiao Huang
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan, Shenzhen 518055 , China
| | - Hongkun Li
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan, Shenzhen 518055 , China
- The Hong Kong University of Science & Technology (HKUST)-Shenzhen Research Institute , No. 9 Yuexing 1st Road, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 50 Donghuan Road , Suzhou 215123 , China
| | - Wenjuan Xia
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan, Shenzhen 518055 , China
| | - Shan Xue
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan, Shenzhen 518055 , China
| | - Qing Xia
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan, Shenzhen 518055 , China
| | - Ben Zhong Tang
- The Hong Kong University of Science & Technology (HKUST)-Shenzhen Research Institute , No. 9 Yuexing 1st Road, South Area, Hi-tech Park , Nanshan, Shenzhen 518057 , China
| |
Collapse
|
11
|
Saravanan RK, Avasthi I, Prajapati RK, Verma S. Surface modification and pattern formation by nucleobases and their coordination complexes. RSC Adv 2018; 8:24541-24560. [PMID: 35539208 PMCID: PMC9082088 DOI: 10.1039/c8ra03903h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
This review presents recent progress concerning the organization of nucleobases on highly ordered pyrolytic graphite (HOPG), mica, Cu(110) and Au(111) surfaces, followed by their studies using microscopy methods such as atomic force microscopy (AFM), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Interesting research prospects related to surface patterning by nucleobases, nucleobase-functionalized carbon nanotubes (CNTs) and metal–nucleobase coordination polymers are also discussed, which offer a wide array of functional molecules for advanced applications. Nucleobases and their analogs are able to invoke non-covalent interactions such as π–π stacking and hydrogen bonding, and possess the required framework to coordinate metal ions, giving rise to fascinating supramolecular architectures. The latter could be transferred to conductive substrates, such as HOPG and gold, for assessment by high-end tunneling microscopy under various conditions. Clear understanding of the principles governing nucleobase self-assembly and metal ion complexation, and precise control over generation of functional architectures, might lead to custom assemblies for targeted nanotechnological and nanomaterial applications. This review highlights recent advancements in surface patterning of nucleobases, their analogs including nucleobase-CNT hybrids and metal complexes, using various microscopy techniques for nanotechnological applications.![]()
Collapse
Affiliation(s)
- R. Kamal Saravanan
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur, 208016
- India
| | - Ilesha Avasthi
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur, 208016
- India
| | - Rajneesh Kumar Prajapati
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur, 208016
- India
- Centre for Nanoscience
| | - Sandeep Verma
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur, 208016
- India
- Centre for Nanoscience
| |
Collapse
|