1
|
Cao X, Wang P, Zhao W, Yuan H, Hu H, Chen T, Zhang Y, Ren Y, Su L, Fu K, Liu H, Guo D. Structure-Affinity and Structure-Kinetic Relationship Studies of Benzodiazepine Derivatives for the Development of Efficacious Vasopressin V 2 Receptor Antagonists. J Med Chem 2023; 66:3621-3634. [PMID: 36732931 DOI: 10.1021/acs.jmedchem.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vasopressin V2 receptors (V2R) are a promising drug target for autosomal dominant polycystic kidney disease (ADPKD). As previous research demonstrated that the residence time of V2R antagonists is critical to their efficacy in both ex vivo and in vivo models of ADPKD, we performed extensive structure-kinetic relationship (SKR) analyses on a series of benzodiazepine derivatives. We found that subtle structural modifications of the benzodiazepine derivatives dramatically changed their binding kinetics but not their affinity. Compound 18 exhibited a residence time of 77 min, which was 7.7-fold longer than that of the reference compound tolvaptan (TVP). Accordingly, compound 18 exhibited higher efficacy compared to TVP in an in vivo model of ADPKD. Overall, our study exemplifies a kinetics-directed medicinal chemistry effort for the development of efficacious V2R antagonists. We envision that this strategy may also have general applicability in other therapeutic areas.
Collapse
Affiliation(s)
- Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Peng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Wenchao Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Hongtao Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Ting Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Yixiao Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu221004, China
| |
Collapse
|
2
|
Zhang J, Chen J, Xu J, Xue C, Mao Z. Plant-derived compounds for treating autosomal dominant polycystic kidney disease. FRONTIERS IN NEPHROLOGY 2023; 3:1071441. [PMID: 37675342 PMCID: PMC10479581 DOI: 10.3389/fneph.2023.1071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 09/08/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic hereditary kidney disease, is the fourth leading cause of end-stage kidney disease worldwide. In recent years, significant progress has been made in delaying ADPKD progression with different kinds of chemical drugs, such as tolvaptan, rapamycin, and somatostatin. Meanwhile, numerous plant-derived compounds have been investigated for their beneficial effects on slowing ADPKD progression. Among them, saikosaponin-d, Ganoderma triterpenes, curcumin, ginkgolide B, steviol, resveratrol, Sparganum stoloniferum Buch.-Ham, Cordyceps sinensis, triptolide, quercitrin, naringin, cardamonin, gambogic acid, and olive leaf extract have been found to retard renal cyst development by inhibiting cell proliferation or promoting cell apoptosis in renal cyst-lining epithelial cells. Metformin, a synthesized compound derived from French lilac or goat's rue (Galega officinalis), has been proven to retard the progression of ADPKD. This review focuses on the roles and mechanisms of plant-derived compounds in treating ADPKD, which may constitute promising new therapeutics in the future.
Collapse
Affiliation(s)
- Jieting Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiaxin Chen
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing Xu
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng Xue
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Saravanabavan S, Rangan GK. Culture of Three-Dimensional Madin-Darby Canine Kidney (MDCK) Cysts for In Vitro Drug Testing in Polycystic Kidney Disease. Methods Mol Biol 2023; 2664:135-144. [PMID: 37423987 DOI: 10.1007/978-1-0716-3179-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The formation and growth of kidney cysts (fluid-filled structures lined by epithelial cells) is the primary pathological abnormality in polycystic kidney disease (PKD). Multiple molecular pathways are disrupted in kidney epithelial precursor cells, which lead to altered planar cell polarity, increased proliferation, and fluid secretion, which together with extracellular matrix remodelling culminates in the formation and growth of cysts. Three-dimensional (3D) in vitro cyst models serve as suitable preclinical models to screen candidate drugs for PKD. Madin-Darby Canine Kidney (MDCK) epithelial cells form polarized monolayers with a fluid-filled lumen when suspended in a collagen gel, and their growth is accelerated with the addition of forskolin, a cyclic adenosine monophosphate (cAMP) agonist. Candidate drugs for PKD can be screened for their ability to modulate growth of forskolin-treated MDCK cysts by measuring and quantifying cyst images acquired at progressive timepoints. In this chapter, we describe the detailed methods for the culture and growth of MDCK cysts in a collagen matrix and a protocol for their use in testing candidate drugs to prevent cyst formation and growth.
Collapse
Affiliation(s)
- Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, NSW, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia.
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, NSW, Australia.
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
4
|
Discovery of Novel N-(5-(Pyridin-3-yl)-1 H-indazol-3-yl)benzamide Derivatives as Potent Cyclin-Dependent Kinase 7 Inhibitors for the Treatment of Autosomal Dominant Polycystic Kidney Disease. J Med Chem 2022; 65:15770-15788. [PMID: 36384292 DOI: 10.1021/acs.jmedchem.2c01334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that CDK7 is a novel potential drug target for autosomal dominant polycystic kidney disease (ADPKD) treatment. Herein, on the basis of structural analysis, a hit compound 3 with a novel scaffold was designed and subsequent medicinal chemistry efforts by a rational design strategy were conducted to improve CDK7 inhibitors' potency and selectivity. The representative compound B2 potently inhibited CDK7 with an IC50 value of 4 nM and showed high selectivity over CDKs. Compound B2 showed high potency to inhibit cyst growth and exhibited lower cytotoxicity than THZ1 in an in vitro Madin-Darby canine kidney cyst model. In addition, compound B2 was also highly efficacious in suppressing renal cyst development in an ex vivo embryonic kidney cyst model and in vivo ADPKD mouse model. These results indicate that compound B2 represents a promising lead compound that deserves further investigation to discover novel therapeutic agents for ADPKD.
Collapse
|
5
|
Chen YQ, Chen HY, Tang QQ, Li YF, Liu XS, Lu FH, Gu YY. Protective effect of quercetin on kidney diseases: From chemistry to herbal medicines. Front Pharmacol 2022; 13:968226. [PMID: 36120321 PMCID: PMC9478191 DOI: 10.3389/fphar.2022.968226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney injuries may trigger renal fibrosis and lead to chronic kidney disease (CKD), but effective therapeutic strategies are still limited. Quercetin is a natural flavonoid widely distributed in herbal medicines. A large number of studies have demonstrated that quercetin may protect kidneys by alleviating renal toxicity, apoptosis, fibrosis and inflammation in a variety of kidney diseases. Therefore, quercetin could be one of the promising drugs in the treatment of renal disorders. In the present study, we review the latest progress and highlight the beneficial role of quercetin in kidney diseases and its underlying mechanisms. The pharmacokinetics and bioavailability of quercetin and its proportion in herbal medicine will also be discussed.
Collapse
Affiliation(s)
- Yi-Qin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao-Yin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin-Qi Tang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Fan Li
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fu-Hua Lu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fu-Hua Lu, ; Yue-Yu Gu,
| | - Yue-Yu Gu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fu-Hua Lu, ; Yue-Yu Gu,
| |
Collapse
|
6
|
Cao X, Wang P, Yuan H, Zhang H, He Y, Fu K, Fang Q, Liu H, Su L, Yin L, Xu P, Xie Y, Xiong X, Wang J, Zhu X, Guo D. Benzodiazepine Derivatives as Potent Vasopressin V 2 Receptor Antagonists for the Treatment of Autosomal Dominant Kidney Disease. J Med Chem 2022; 65:9295-9311. [PMID: 35579344 DOI: 10.1021/acs.jmedchem.2c00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyst formation and enlargement in autosomal dominant kidney disease (ADPKD) is mainly driven by aberrantly increased cytosolic cAMP in renal tubule epithelial cells. Because the vasopressin V2 receptor (V2R) regulates intracellular cAMP levels in kidneys, a series of benzodiazepine derivatives were developed targeting the V2R. Among these derivatives, compound 25 exhibited potent binding affinity to the V2R (Ki = 9.0 ± 1.5 nM) and efficacious cAMP inhibition (IC50 = 9.2 ± 3.0 nM). This led to the suppression of cyst formation and growth in both an MDCK cell model and an embryonic kidney cyst model. Further advancing compound 25 in a murine model of ADPKD demonstrated a significantly improved in vivo efficacy compared with the reference compound tolvaptan. Overall, compound 25 holds therapeutic potential for the treatment of ADPKD.
Collapse
Affiliation(s)
- Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Peng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yan He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Kequan Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Qian Fang
- The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou 221002, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Limin Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Long Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Yuyang Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Xiaochun Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Junqi Wang
- The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou 221002, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
7
|
Mahendran R, Lim SK, Ong KC, Chua KH, Chai HC. Natural-derived compounds and their mechanisms in potential autosomal dominant polycystic kidney disease (ADPKD) treatment. Clin Exp Nephrol 2021; 25:1163-1172. [PMID: 34254206 DOI: 10.1007/s10157-021-02111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic kidney disorder that impairs renal functions progressively leading to kidney failure. The disease affects between 1:400 and 1:1000 ratio of the people worldwide. It is caused by the mutated PKD1 and PKD2 genes which encode for the defective polycystins. Polycystins mimic the receptor protein or protein channel and mediate aberrant cell signaling that causes cystic development in the renal parenchyma. The cystic development is driven by the increased cyclic AMP stimulating fluid secretion and infinite cell growth. In recent years, natural product-derived small molecules or drugs targeting specific signaling pathways have caught attention in the drug discovery discipline. The advantages of natural products over synthetic drugs enthusiast researchers to utilize the medicinal benefits in various diseases including ADPKD. CONCLUSION Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.
Collapse
Affiliation(s)
- Rhubaniya Mahendran
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Ngoi NY, Liew AQ, Chong SJF, Davids MS, Clement MV, Pervaiz S. The redox-senescence axis and its therapeutic targeting. Redox Biol 2021; 45:102032. [PMID: 34147844 PMCID: PMC8220395 DOI: 10.1016/j.redox.2021.102032] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Significance Cellular growth arrest, associated with ‘senescence’, helps to safeguard against the accumulation of DNA damage which is often recognized as the underlying mechanism of a wide variety of age-related pathologies including cancer. Cellular senescence has also been described as a ‘double-edged sword’. In cancer, for example, the creation of an immune-suppressive milieu by senescent tumor cells through the senescence-associated secretory phenotype contributes toward carcinogenesis and cancer progression. Recent advances The potential for cellular senescence to confer multi-faceted effects on tissue fate has led to a rejuvenated interest in its landscape and targeting. Interestingly, redox pathways have been described as both triggers and propagators of cellular senescence, leading to intricate cross-links between both pathways. Critical issues In this review, we describe the mechanisms driving cellular senescence, the interface with cellular redox metabolism as well as the role that chemotherapy-induced senescence plays in secondary carcinogenesis. Notably, the role that anti-apoptotic proteins of the Bcl-2 family play in inducing drug resistance via mechanisms that involve senescence induction. Future directions Though the therapeutic targeting of senescent cells as cancer therapy remains in its infancy, we summarize the current development of senotherapeutics, including recognized senotherapies, as well as the repurposing of drugs as senomorphic/senolytic candidates.
Collapse
Affiliation(s)
- Natalie Yl Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Angeline Qx Liew
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stephen J F Chong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marie-Veronique Clement
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; Faculté de Medicine, University of Paris, Paris, France.
| |
Collapse
|
9
|
Li Y, Gao J, Yang X, Li T, Yang B, Aili A. Combination of curcumin and ginkgolide B inhibits cystogenesis by regulating multiple signaling pathways. Mol Med Rep 2021; 23:195. [PMID: 33495815 PMCID: PMC7821343 DOI: 10.3892/mmr.2021.11834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), a common disease with a high incidence ratio of between 1/400 and 1/1,000 individuals, often results in kidney failure and even mortality. However, there are relatively few effective treatments available, and treatment is limited to lifelong hemodialysis or kidney transplant. Our previous studies have reported that curcumin (Cur) and ginkgolide B (GB) inhibited cystogenesis by regulating the Ras/ERK MAPK signaling pathway. In the present study, it was hypothesized that Cur and GB may have a synergistic effect on the inhibition of cystogenesis, and their synergistic effect may be the result of regulation of multiple signaling pathways. To assess this hypothesis, an in vitro Madin‑Darby canine kidney (MDCK) cyst model and an in vivo kidney‑specific polycystin 1 transient receptor potential channel interacting (Pkd1) knockout mouse model were established to observe the effects of the combination of Cur and GB. The cysts exposed to Cur, GB and Cur combined with GB became small thick‑walled cysts, small thin‑walled cysts and round shaped cell colonies, respectively. The combination of Cur and GB was more effective compared with either treatment alone in inhibiting cystogenesis. Additionally, to the best of our knowledge, the present study was the first to demonstrate the synergistic effect of Cur and GB on the inhibition of cystogenesis in Pkd1 knockout mice. Cur may have mediated its anti‑cyst effects by blocking EGFR/ERK1/2, JNK and PI3K/mTOR signaling pathways, while GB may have inhibited cystogenesis via the downregulation of the EGFR/ERK1/2, JNK and p38 signaling pathways. These results provide a proof‑of‑concept for application of the combination of Cur and GB in inhibiting cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Yousong Li
- Department of Traditional Chinese Medicine, Shanxi Bethune Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Jinsheng Gao
- Ping An Healthcare and Technology Company Limited (‘Ping an’), Shanghai 200120, P.R. China
| | - Xi Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Tao Li
- Ping An Healthcare and Technology Company Limited (‘Ping an’), Shanghai 200120, P.R. China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Aixingzi Aili
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| |
Collapse
|
10
|
Matilla-Cuenca L, Gil C, Cuesta S, Rapún-Araiz B, Žiemytė M, Mira A, Lasa I, Valle J. Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Sci Rep 2020; 10:18968. [PMID: 33144670 PMCID: PMC7641273 DOI: 10.1038/s41598-020-75929-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
The opportunistic pathogen Staphylococcus aureus is responsible for causing infections related to indwelling medical devices, where this pathogen is able to attach and form biofilms. The intrinsic properties given by the self-produced extracellular biofilm matrix confer high resistance to antibiotics, triggering infections difficult to treat. Therefore, novel antibiofilm strategies targeting matrix components are urgently needed. The Biofilm Associated Protein, Bap, expressed by staphylococcal species adopts functional amyloid-like structures as scaffolds of the biofilm matrix. In this work we have focused on identifying agents targeting Bap-related amyloid-like aggregates as a strategy to combat S. aureus biofilm-related infections. We identified that the flavonoids, quercetin, myricetin and scutellarein specifically inhibited Bap-mediated biofilm formation of S. aureus and other staphylococcal species. By using in vitro aggregation assays and the cell-based methodology for generation of amyloid aggregates based on the Curli-Dependent Amyloid Generator system (C-DAG), we demonstrated that these polyphenols prevented the assembly of Bap-related amyloid-like structures. Finally, using an in vivo catheter infection model, we showed that quercetin and myricetin significantly reduced catheter colonization by S. aureus. These results support the use of polyphenols as anti-amyloids molecules that can be used to treat biofilm-related infections.
Collapse
Affiliation(s)
- Leticia Matilla-Cuenca
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Avenida Pamplona 123, 31192, Mutilva, Spain
| | - Carmen Gil
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, 31008, Pamplona, Navarra, Spain
| | - Sergio Cuesta
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Avenida Pamplona 123, 31192, Mutilva, Spain
| | - Beatriz Rapún-Araiz
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, 31008, Pamplona, Navarra, Spain
| | - Miglė Žiemytė
- Genomics and Health Department, FISABIO Foundation, 46020, Valencia, Spain
| | - Alex Mira
- Genomics and Health Department, FISABIO Foundation, 46020, Valencia, Spain
| | - Iñigo Lasa
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, 31008, Pamplona, Navarra, Spain
| | - Jaione Valle
- Instituto de Agrobiotecnología (IDAB), CSIC-UPNA-Gobierno de Navarra, Avenida Pamplona 123, 31192, Mutilva, Spain.
| |
Collapse
|
11
|
He J, Zhou H, Meng J, Zhang S, Li X, Wang S, Shao G, Jin W, Geng X, Zhu S, Yang B. Cardamonin retards progression of autosomal dominant polycystic kidney disease via inhibiting renal cyst growth and interstitial fibrosis. Pharmacol Res 2020; 155:104751. [PMID: 32151678 DOI: 10.1016/j.phrs.2020.104751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenetic inherited kidney disease characterized by renal progressive fluid-filled cysts and interstitial fibrosis. Inhibiting renal cyst development and interstitial fibrosis has been proven effective in delaying the progression of ADPKD. The purpose of this study was to discover effective drugs from natural products for preventing and treating ADPKD. Candidate compounds were screened from a natural product library by virtual screening. The Madin-Darby canine kidney (MDCK) cyst model, embryonic kidney cyst model, and orthologous mouse model of ADPKD were utilized to determine the pharmacological activities of the candidate compounds. Western blot and morphological analysis were used to investigate underlying mechanisms. The experimental results showed that 0.625, 2.5, and 10 μM cardamonin dose-dependently reduced formation and enlargement in MDCK cyst model. Cardamonin also significantly attenuated renal cyst enlargement in ex vivo mouse embryonic kidneys and PKD mouse kidneys. We found that cardamonin inhibited renal cyst development and interstitial fibrosis by downregulating the MAPK, Wnt, mTOR, and transforming growth factor-β/Smad2/3 signaling pathways. Cardamonin significantly inhibits renal cyst development and interstitial fibrosis, suggesting that cardamonin shows promise as a potential therapeutic drug for preventing and treating ADPKD.
Collapse
Affiliation(s)
- Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiaowei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Guangying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - William Jin
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shuai Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
12
|
Temporal Effects of Quercetin on Tight Junction Barrier Properties and Claudin Expression and Localization in MDCK II Cells. Int J Mol Sci 2019; 20:ijms20194889. [PMID: 31581662 PMCID: PMC6801663 DOI: 10.3390/ijms20194889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 01/22/2023] Open
Abstract
: Kidney stones affect 10% of the population. Yet, there is relatively little known about how they form or how to prevent and treat them. The claudin family of tight junction proteins has been linked to the formation of kidney stones. The flavonoid quercetin has been shown to prevent kidney stone formation and to modify claudin expression in different models. Here we investigate the effect of quercetin on claudin expression and localization in MDCK II cells, a cation-selective cell line, derived from the proximal tubule. For this study, we focused our analyses on claudin family members that confer different tight junction properties: barrier-sealing (Cldn1, -3, and -7), cation-selective (Cldn2) or anion-selective (Cldn4). Our data revealed that quercetin's effects on the expression and localization of different claudins over time corresponded with changes in transepithelial resistance, which was measured continuously throughout the treatment. In addition, these effects appear to be independent of PI3K/AKT signaling, one of the pathways that is known to act downstream of quercetin. In conclusion, our data suggest that quercetin's effects on claudins result in a tighter epithelial barrier, which may reduce the reabsorption of sodium, calcium and water, thereby preventing the formation of a kidney stone.
Collapse
|
13
|
Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X, Lu Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res 2019; 33:3140-3152. [PMID: 31452288 DOI: 10.1002/ptr.6486] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Multiphase pathological processes involve in Type 2 diabetes (T2DM)-induced nonalcoholic fatty liver disease (NAFLD). However, the therapies are quite limited. In the present study, the hepatoprotective effects and underlying mechanisms of quercetin in T2DM-induced NAFLD were investigated. T2DM-induced NAFLD and quercetin treatment models were established in vivo and in vitro. The results revealed that quercetin alleviated serum transaminase levels and markedly reduced T2DM-induced histological alterations of livers. Additionally, quercetin restored superoxide dismutase, catalase, and glutathione content in livers. Not only that, quercetin markedly attenuated T2DM-induced production of interleukin 1 beta, interleukin 6, and TNF-α. Accompanied by the restoration of the increased serum total bile acid (p = .0001) and the decreased liver total bile acid (p = .0005), quercetin could reduce lipid accumulation in the liver of db/db mice. Further mechanism studies showed that farnesoid X receptor 1/Takeda G-protein-coupled receptor 5 signaling pathways was involved in quercetin regulation of lipid metabolism in T2DM-induced NAFLD. In high D-glucose and free fatty acid cocultured HepG2 cells model, quercetin eliminated lipid droplets and restored the upregulated total cholesterol and triglyceride levels. Similar to the findings in mice, quercetin could also activate farnesoid X receptor 1/Takeda G-protein-coupled receptor 5 signaling pathway. These findings suggested that quercetin might be a potentially effective drug for the treatment of T2DM-induced NAFLD.
Collapse
Affiliation(s)
- Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xuan Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shiyu Mao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Renal ciliopathies. Curr Opin Genet Dev 2019; 56:49-60. [DOI: 10.1016/j.gde.2019.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
|
15
|
Developing a link between toxicants, claudins and neural tube defects. Reprod Toxicol 2018; 81:155-167. [DOI: 10.1016/j.reprotox.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
16
|
Kim JK, Park SU. Quercetin and its role in biological functions: an updated review. EXCLI JOURNAL 2018; 17:856-863. [PMID: 30233284 PMCID: PMC6141818 DOI: 10.17179/excli2018-1538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|