1
|
Liao H, He X, Guo P, Wang S, Li Y, Jiang Z, Wang L, Xu R, Tu H. Study on the Impact of Porous Media on Condensate Gas Depletion: A Case Study of Reservoir in Xihu Sag. ACS OMEGA 2024; 9:43850-43863. [PMID: 39494029 PMCID: PMC11525514 DOI: 10.1021/acsomega.4c06866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
During the depletion and pressure reduction process in condensate gas reservoirs, the precipitation of condensate oil transforms the single-phase gas flow into a two-phase gas-liquid flow, significantly reducing the permeability. Currently, microscopic studies of the phase behavior of condensate gas in porous media mainly focus on observing and describing the occurrence of condensate oil, lacking quantitative calculations and direct observations of condensate oil throughout the entire depletion cycle. This paper uses a microvisualization method to simulate the depletion process of condensate gas reservoirs. Condensate gases with oil contents of 175.3 and 505.5 g/cm3 were prepared by mixing methane, ethane, hexane, and decane in specific proportions. Pore structures were extracted from thin sections of real core casts, and microfluidic chips with a minimum pore diameter of 20 μm and an areal porosity of 20.75% were fabricated by using a chemical wet etching method. Subsequently, microfluidic condensate gas depletion experiments were conducted with chip images recorded during the depletion process. Grayscale analysis of the depletion images was performed using ImageJ software to quantitatively calculate condensate oil saturation and recovery rates, analyzing the effects of different condensate oil contents on condensate gas depletion, and comparing the differences between depletion in porous media and in a PVT cell. The conclusions drawn are as follows: the dew points of high and low in the porous media are 3.15% and 1.85% higher than those in the PVT cell, respectively. In the early stages of depletion, condensate oil saturation in porous media is higher than that in the PVT cell, while in the middle to late stages, condensate oil saturation in porous media is lower than that in the PVT cell. The condensate oil recovery rate in porous media is significantly higher than the depletion recovery rate in the PVT cell. Condensate oil tends to precipitate and disperse at blind ends and corners, while it easily forms patches in mainstream large pores.
Collapse
Affiliation(s)
- Hengjie Liao
- Shanghai
Branch of CNOOC Limited, Shanghai 200335, China
| | - Xianke He
- Shanghai
Branch of CNOOC Limited, Shanghai 200335, China
| | - Ping Guo
- National
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| | - Shuoshi Wang
- National
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| | - Yuansheng Li
- Shanghai
Branch of CNOOC Limited, Shanghai 200335, China
| | - Zhehao Jiang
- Shanghai
Branch of CNOOC Limited, Shanghai 200335, China
| | - Limiao Wang
- National
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| | - Ruifeng Xu
- National
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| | - Hanmin Tu
- National
Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
2
|
Yang J, Tsai PA. Microfluidic supercritical CO 2 applications: Solvent extraction, nanoparticle synthesis, and chemical reaction. BIOMICROFLUIDICS 2024; 18:051301. [PMID: 39345267 PMCID: PMC11435780 DOI: 10.1063/5.0215567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
SupercriticalCO 2 , known for its non-toxic, non-flammable and abundant properties, is well-perceived as a green alternative to hazardous organic solvents. It has attracted considerable interest in food, pharmaceuticals, chromatography, and catalysis fields. When supercriticalCO 2 is integrated into microfluidic systems, it offers several advantages compared to conventional macro-scale supercritical reactors. These include optical transparency, small volume, rapid reaction, and precise manipulation of fluids, making microfluidics a versatile tool for process optimization and fundamental studies of extraction and reaction kinetics in supercriticalCO 2 applications. Moreover, the small length scale of microfluidics allows for the production of uniform nanoparticles with reduced particle size, beneficial for nanomaterial synthesis. In this perspective, we review microfluidic investigations involving supercriticalCO 2 , with a particular focus on three primary applications, namely, solvent extraction, nanoparticle synthesis, and chemical reactions. We provide a summary of the experimental innovations, key mechanisms, and principle findings from these microfluidic studies, aiming to spark further interest. Finally, we conclude this review with some discussion on the future perspectives in this field.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peichun Amy Tsai
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
3
|
Salek MM, Carrara F, Zhou J, Stocker R, Jimenez‐Martinez J. Multiscale Porosity Microfluidics to Study Bacterial Transport in Heterogeneous Chemical Landscapes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310121. [PMID: 38445967 PMCID: PMC11132056 DOI: 10.1002/advs.202310121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 03/07/2024]
Abstract
Microfluidic models are proving to be powerful systems to study fundamental processes in porous media, due to their ability to replicate topologically complex environments while allowing detailed, quantitative observations at the pore scale. Yet, while porous media such as living tissues, geological substrates, or industrial systems typically display a porosity that spans multiple scales, most microfluidic models to date are limited to a single porosity or a small range of pore sizes. Here, a novel microfluidic system with multiscale porosity is presented. By embedding polyacrylamide (PAAm) hydrogel structures through in-situ photopolymerization in a landscape of microfabricated polydimethylsiloxane (PDMS) pillars with varying spacing, micromodels with porosity spanning several orders of magnitude, from nanometers to millimeters are created. Experiments conducted at different porosity patterns demonstrate the potential of this approach to characterize fundamental and ubiquitous biological and geochemical transport processes in porous media. Accounting for multiscale porosity allows studies of the resulting heterogeneous fluid flow and concentration fields of transported chemicals, as well as the biological behaviors associated with this heterogeneity, such as bacterial chemotaxis. This approach brings laboratory studies of transport in porous media a step closer to their natural counterparts in the environment, industry, and medicine.
Collapse
Affiliation(s)
- M. Mehdi Salek
- Department of Biological Engineering, School of EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Francesco Carrara
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Jiande Zhou
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
- Microsystems LaboratoryInstitute of MicroengineeringSchool of EngineeringEPFLLausanneSwitzerland
| | - Roman Stocker
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Joaquin Jimenez‐Martinez
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
- Department of Water Resources and Drinking WaterEawagDubendorfSwitzerland
| |
Collapse
|
4
|
Chandrasekharan HK, Wlodarczyk KL, MacPherson WN, Maroto-Valer MM. In-situ multicore fibre-based pH mapping through obstacles in integrated microfluidic devices. Sci Rep 2024; 14:2839. [PMID: 38310119 PMCID: PMC10838297 DOI: 10.1038/s41598-024-53106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
Microfluidic systems with integrated sensors are ideal platforms to study and emulate processes such as complex multiphase flow and reactive transport in porous media, numerical modeling of bulk systems in medicine, and in engineering. Existing commercial optical fibre sensing systems used in integrated microfluidic devices are based on single-core fibres, limiting the spatial resolution in parameter measurements in such application scenarios. Here, we propose a multicore fibre-based pH system for in-situ pH mapping with tens of micrometer spatial resolution in microfluidic devices. The demonstration uses custom laser-manufactured glass microfluidic devices (called further micromodels) consisting of two round ports. The micromodels comprise two lintels for the injection of various pH buffers and an outlet. The two-port system facilitates the injection of various pH solutions using independent pressure pumps. The multicore fibre imaging system provides spatial information about the pH environment from the intensity distribution of fluorescence emission from the sensor attached to the fibre end facet, making use of the cores in the fibre as independent measurement channels. As proof-of-concept, we performed pH measurements in micromodels through obstacles (glass and rock beads), showing that the particle features can be clearly distinguishable from the intensity distribution from the fibre sensor.
Collapse
Affiliation(s)
- Harikumar K Chandrasekharan
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Krystian L Wlodarczyk
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - William N MacPherson
- Applied Optics and Photonics Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
5
|
AlOmier A, Cha D, Ayirala S, Al-Yousef A, Hoteit H. Novel fabrication of mixed wettability micromodels for pore-scale studies of fluid-rock interactions. LAB ON A CHIP 2024. [PMID: 38258315 DOI: 10.1039/d3lc01009k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Wettability plays a crucial role in multiphase fluid flow in porous media, impacting various geological applications such as hydrocarbon extraction, aquifer remediation, and carbon dioxide sequestration. Microfluidic methods have attracted interest for their capacity to explore and visualize essential multiphase flow dynamics at the pore level, mimicking actual rock pore structures. However, creating micromodels with representative mixed wettability is currently a challenge. Existing technology is limited to producing micromodels with a singular wettability, either water-wet or oil-wet, leaving a gap in representing mixed-wet scenarios. In this study, we introduce a novel method to fabricate microfluidic devices with controlled spatial distribution of wettability at the micro-scale, mimicking actual configurations of mixed-wet rocks arising from varied mineralogy and pore structures. The proposed method combines the soft lithography process with thin film deposition techniques. The micromodels were designed to mimic the pore network of actual reservoir rocks, and a silicon substrate served as the foundation for the photolithography process optimization and wettability alteration methodology. Perfluorodecyltrichlorosilane coating was applied using molecular vapor deposition technology for surface wettability modification. The coated parts of the microdevice substrate altered the localized wetting state of the silicon towards hydrophobic, while the wettability remained unchanged in the non-coated areas. We utilized surface measurements, including contact angle, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy, to assess the wettability, composition, thickness, shape, roughness, and overall quality of the coating. Our fabrication process successfully produced a microfluidics device with tailored mixed-wet attributes at the micro-scale, which is, to our best knowledge, the first achievement in the field. This method enables the replication of mixed-wet characteristics commonly seen in various applications, such as carbonates and shales within underground rocks, providing a more accurate examination of fundamental multiphase fluid dynamics and rock interactions at the pore level.
Collapse
Affiliation(s)
- Abdullah AlOmier
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Dongkyu Cha
- EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia
| | - Subhash Ayirala
- EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia
| | - Ali Al-Yousef
- EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia
| | - Hussein Hoteit
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
6
|
Mo Y, Chang X, Yu Z, Sun D, Zhou D, Li L. Three-Dimensional Rock Core-Like Microstructure Fabricated by Additive Manufacturing for Petroleum Engineering. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1301-1308. [PMID: 38116228 PMCID: PMC10726170 DOI: 10.1089/3dp.2021.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the recovery rate of oil in the formation, oil recovery technology has been continuously studied. Considering the experimental cost and data measurement in oil recovery research, laboratory oil recovery is the most effective method. The rock core model used in the simulation directly affects whether the research results are credible. However, the current three-dimensional rock core model manufacturing methods and corresponding models lack of reproducible, customizable, and visualized characteristics. In this study, a reproducible rock core model of microsphere accumulation based on the structure of natural rock core was designed and manufactured by microstereolithography. Oil recovery experiments and simulation studies show that the rock core model has similar flow characteristics to natural rock cores. In addition, resin rock core models with different structures and hydrogel rock core models with deformability are also manufactured by microstereolithography and used for simulation analysis. This research provides an effective and reproducible rock core structure model for the experiment of oil recovery research.
Collapse
Affiliation(s)
- Yi Mo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xiaocong Chang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Zhongwei Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Daxing Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
7
|
Qin W, Guo Y, Sun L, Shi J, Bao B. Spontaneous Imbibition in Nanomatrix-Fracture of Low Permeability Using Multiscale Nanofluidic Chips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38037241 DOI: 10.1021/acs.langmuir.3c02673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Spontaneous imbibition has garnered increasing attention as an attractive mechanism for developing tight reservoirs. Despite valuable insights from previous experiments, there remains a lack of understanding regarding the imbibition process within multiscale nanopore-fracture networks. In this work, we devised an innovative multiscale model incorporating over 105 nanochannels and integrating a microfracture network to explore the complex imbibition behavior in tight formations. Additionally, fracture-free nanomatrix models with low permeability were developed for comparative discussions. The results show that the Lucas-Washburn equation remains valid at the tremendous fracture-free nanopore networks under the confinement of 500 nm, with a relative deviation of ±6%. The nanomatrix's heterogeneity hinders the imbibition rate, resulting in a reduction of 4.6 to 10.8% in the imbibition slope. The viscosity plays a dominant role in the change of imbibition slope as temperature varies. Our experiments also found that the interactions between the nanomatrix and bulk fracture complicate the imbibition process. A single wetting front no longer applies in the nanomatrix-fracture networks. Differing fracture/microchannel connectivity leads to disparities in macroscopic patterns, saturation rates, and flow directions. The spatial arrangement of fractures significantly impacts the imbibition time. Overall, this work based on nanofluidic techniques systematically explores the effects of matrix heterogeneity, temperature, and fractures on the imbibition process. The real-time in situ visualization of fluid distribution in multiscale matrix-fracture systems has been achieved, which offers theoretical guidance for practical engineering applications.
Collapse
Affiliation(s)
- Wanjun Qin
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaohao Guo
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linghui Sun
- Development Research Institute, Research Center for Enhanced Oil Recovery of China Petroleum Exploration, Beijing 10083, China
| | - Jiawei Shi
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Bao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
O'Brien M, Moraru R. An Automated Computer-Vision "Bubble-Counting" Technique to Characterise CO 2 Dissolution into an Acetonitrile Flow Stream in a Teflon AF-2400 Tube-in-Tube Flow Device. Chempluschem 2023; 88:e202200167. [PMID: 35997644 DOI: 10.1002/cplu.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Indexed: 01/28/2023]
Abstract
A Teflon AF-2400 based tube-in-tube device was used to generate flow streams of CO2 in acetonitrile and a computer-vision based 'bubble counting' technique was used to estimate the amount of CO2 that had passed into solution whilst in the tube-in-tube device by quantifying the amount of CO2 that left solution (forming separate gas-phase segments) downstream of the back-pressure regulator. For both CO2 pressures used, there appeared to be a minimum residence time below which no CO2 was observed to leave solution. This was assumed to be due to residual CO2 below (or close to) the saturation concentration at atmospheric pressure and, by taking this into account, we were able to fit curves corresponding to simple gradient-driven diffusion and which closely matched previously obtained colorimetric titration data for the same system. The estimated value for the residual concentration of CO2 (0.37 M) is higher than, but in reasonable general correspondence with, saturation concentrations previously reported for CO2 in acetonitrile (0.27 M).
Collapse
Affiliation(s)
- Matthew O'Brien
- The Lennard-Jones Laboratories, Keele University, Keele, Borough of Newcastle-under-Lyme, ST5 5BG, Staffordshire, UK
| | - Ruxandra Moraru
- The Lennard-Jones Laboratories, Keele University, Keele, Borough of Newcastle-under-Lyme, ST5 5BG, Staffordshire, UK
| |
Collapse
|
9
|
Singh N, Simeski F, Ihme M. Computing Thermodynamic Properties of Fluids Augmented by Nanoconfinement: Application to Pressurized Methane. J Phys Chem B 2022; 126:8623-8631. [PMID: 36279403 DOI: 10.1021/acs.jpcb.2c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanoconfined fluids exhibit remarkably different thermodynamic behavior compared to the bulk phase. These confinement effects render predictions of thermodynamic quantities of nanoconfined fluids challenging. In particular, confinement creates a spatially varying density profile near the wall that is primarily responsible for adsorption and capillary condensation behavior. Significant fluctuations in thermodynamic quantities, inherent in such nanoscale systems, coupled to strong fluid-wall interactions give rise to this near-wall density profile. Empirical models have been proposed to explain and model these effects, yet no first-principles based formulation has been developed. We present a statistical mechanics framework that embeds such a coupling to describe the effect of the fluid-wall interaction in amplifying the near-wall density behavior for compressible gases at elevated pressures such as pressurized methane in confinement. We show that the proposed theory predicts accurately the adsorbed layer thickness as obtained with small-angle neutron scattering measurements. Furthermore, the predictions of density under confinement from the proposed theory are shown to be in excellent agreement with available experimental and atomistic simulations data for a range of temperatures for nanoconfined methane. While the framework is presented for evaluating the near-wall density, owing to its rigorous foundation in statistical mechanics, the proposed theory can also be generalized for predicting phase-transition and nonequilibrium transport of nanoconfined fluids.
Collapse
Affiliation(s)
- Narendra Singh
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Filip Simeski
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthias Ihme
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
10
|
Adidharma H, Tan SP. Experiments of Vapor–Liquid Phase Transition of Fluids Confined in Nanopores: Implications on Modeling. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hertanto Adidharma
- Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Sugata P. Tan
- Planetary Science Institute, Tucson, Arizona 85719, United States
| |
Collapse
|
11
|
Wells JD, Creek JL, Koh CA. Midstream on a chip: ensuring safe carbon dioxide transportation for carbon capture and storage. LAB ON A CHIP 2022; 22:1594-1603. [PMID: 35315861 DOI: 10.1039/d2lc00117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Emerging technologies like enhanced oil recovery and carbon sequestration rely on carbon dioxide water content data to ensure that pipelines remain sub-saturated to avoid corrosion and hydrate flow assurance issues. To improve throughput and confidence in the hydrate phase equilibria data to avoid pipeline blockages, further research into the carbon dioxide water content must be conducted. However, the liquid carbon dioxide regime is experimentally difficult to study and the available data disagree between studies. This work aims to provide the critical and accurate data for liquid carbon dioxide for a high pressure range (13.8 to 103.4 bar) and temperature range (20 and -30 °C) utilizing a small volume microfluidic reactor (<20 microliter) coupled with Raman spectroscopy, which can reveal any phase metastability in the system. The small volume of the microfluidic system (<20 microliter) allowed experiments to be run in a few hours, compared to a whole week for prior larger scale measurements. The carbon dioxide water content results from this work agree well with both model predictions and available literature data in the gas region; however, once carbon dioxide was converted to liquid, the data showed a weak function of pressure, similar to model predictions and some previous data sets. The discrepancies between literature data are attributed to metastable phases present in the equilibrium cells, as the data is usually taken in the carbon dioxide near critical region, close to carbon dioxide's dew point, and near the hydrate phase transition. For these reasons, it is important to observe and qualify all phases in the cell, as was done in this novel study with in situ Raman spectroscopy coupled to Midstream on a chip, to ensure accurate water content of the carbon dioxide fluid phase is being measured.
Collapse
Affiliation(s)
- Jonathan D Wells
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA.
| | - Jefferson L Creek
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA.
| | - Carolyn A Koh
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
12
|
Ghasemi H, Mozaffari S, Mohammadghasemi H, Jemere AB, Nazemifard N. Microfluidic Platform for Characterization of Crude Oil Emulsion Stability. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microfluidic technology has gained significant scientific interest in the characterization of crude oil emulsions that are often formed in the process of oil production. Microfluidic platforms can be used to mimic the pores of natural rock and study multiphase displacement, as well as emulsion formation at a microscale level. This mini-Review focuses on the applications of microfluidics to probe the stability of emulsified droplets against coalescence (e.g., in the presence of additives, electric field, etc.) for both water-in-oil (W/O) and oil-in-water (O/W) emulsion systems. Additionally, this study summarizes the recent efforts made to identify the effects of various experimental factors, including crude oil composition, aging, salinity, and pH on the interfacial properties of water/oil interface and their ultimate roles in the formation/stability of emulsions. Finally, main findings and some recommendations for future work related to the potential of microfluidics in different aspects of crude oil emulsion studies are discussed.
Collapse
Affiliation(s)
- Homa Ghasemi
- University of Wisconsin-Milwaukee, 14751, Department of Materials Science & Engineering, Milwaukee, United States
| | - Saeed Mozaffari
- Virginia Polytechnic Institute and State University, 1757, Department of Chemical Engineering, Blacksburg, United States, 24061-0131
- University of Alberta, 3158, Department of Chemical and Materials Engineering, Edmonton, Canada, T6G 2R3
| | | | - Abebaw B. Jemere
- National Research Council Canada Nanotechnology Research Centre, 103212, Edmonton, Alberta, Canada
| | - Neda Nazemifard
- University of Alberta, 3158, Department of Chemical and Materials Engineering, Edmonton, Canada, T6G 2R3
| |
Collapse
|
13
|
Pagán Pagán NM, Zhang Z, Nguyen TV, Marciel AB, Biswal SL. Physicochemical Characterization of Asphaltenes Using Microfluidic Analysis. Chem Rev 2022; 122:7205-7235. [PMID: 35196011 DOI: 10.1021/acs.chemrev.1c00897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Crude oils are complex mixtures of organic molecules, of which asphaltenes are the heaviest component. Asphaltene precipitation and deposition have been recognized to be a significant problem in oil production, transmission, and processing facilities. These macromolecular aromatics are challenging to characterize due to their heterogeneity and complex molecular structure. Microfluidic devices are able to capture key characteristics of reservoir rocks and provide new insights into the transport, reactions, and chemical interactions governing fluids used in the oil and gas industry. Understanding the microscale phenomena has led to better design of macroscale processes used by the industry. One area that has seen significant growth is in the area of chemical analysis under flowing conditions. Microfluidics and microscale analysis have advanced the understanding of complex mixtures by providing in situ imaging that can be combined with other chemical characterization methods to give details of how oil, water, and added chemicals interface with pore-scale detail. This review article aims to showcase how microfluidic devices offer new physical, chemical, and dynamic information on the behavior of asphaltenes. Specifically, asphaltene deposition and related flow assurance problems, interfacial properties and rheology, and evaluation of remediation strategies studied in microchannels and microfluidic porous media are presented. Examples of successful applications that address key asphaltene-related problems highlight the advances of microscale systems as a tool for advancing the physicochemical characterization of complex fluids for the oil and gas industry.
Collapse
Affiliation(s)
- Nataira M Pagán Pagán
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Zhuqing Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Thao Vy Nguyen
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Zhu X, Wang K, Yan H, Liu C, Zhu X, Chen B. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:711-731. [PMID: 34985862 DOI: 10.1021/acs.est.1c03899] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating environmental processes, especially those occurring in soils, calls for innovative and multidisciplinary technologies that can provide insights at the microscale. The heterogeneity, opacity, and dynamics make the soil a "black box" where interactions and processes are elusive. Recently, microfluidics has emerged as a powerful research platform and experimental tool which can create artificial soil micromodels, enabling exploring soil processes on a chip. Micro/nanofabricated microfluidic devices can mimic some of the key features of soil with highly controlled physical and chemical microenvironments at the scale of pores, aggregates, and microbes. The combination of various techniques makes microfluidics an integrated approach for observation, reaction, analysis, and characterization. In this review, we systematically summarize the emerging applications of microfluidic soil platforms, from investigating soil interfacial processes and soil microbial processes to soil analysis and high-throughput screening. We highlight how innovative microfluidic devices are used to provide new insights into soil processes, mechanisms, and effects at the microscale, which contribute to an integrated interrogation of the soil systems across different scales. Critical discussions of the practical limitations of microfluidic soil platforms and perspectives of future research directions are summarized. We envisage that microfluidics will represent the technological advances toward microscopic, controllable, and in situ soil research.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
Wlodarczyk KL, MacPherson WN, Hand DP, Maroto-Valer MM. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors. SENSORS 2021; 21:s21227493. [PMID: 34833567 PMCID: PMC8625633 DOI: 10.3390/s21227493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/04/2022]
Abstract
In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors can be time-consuming, expensive, and “know-how” demanding. In this article, we describe an easy-to-implement method developed to integrate various “off-the-shelf” fiber optic sensors within microfluidic devices. To demonstrate this, we used commercial pH and pressure sensors (“pH SensorPlugs” and “FOP-MIV”, respectively), which were “reversibly” attached to a glass microfluidic device using custom 3D-printed connectors. The microfluidic device, which serves here as a demonstrator, incorporates a uniform porous structure and was manufactured using a picosecond pulsed laser. The sensors were attached to the inlet and outlet channels of the microfluidic pattern to perform simple experiments, the aim of which was to evaluate the performance of both the connectors and the sensors in a practical microfluidic environment. The bespoke connectors ensured robust and watertight connection, allowing the sensors to be safely disconnected if necessary, without damaging the microfluidic device. The pH SensorPlugs were tested with a pH 7.01 buffer solution. They measured the correct pH values with an accuracy of ±0.05 pH once sufficient contact between the injected fluid and the measuring element (optode) was established. In turn, the FOP-MIV sensors were used to measure local pressure in the inlet and outlet channels during injection and the steady flow of deionized water at different rates. These sensors were calibrated up to 140 mbar and provided pressure measurements with an uncertainty that was less than ±1.5 mbar. Readouts at a rate of 4 Hz allowed us to observe dynamic pressure changes in the device during the displacement of air by water. In the case of steady flow of water, the pressure difference between the two measuring points increased linearly with increasing flow rate, complying with Darcy’s law for incompressible fluids. These data can be used to determine the permeability of the porous structure within the device.
Collapse
Affiliation(s)
- Krystian L. Wlodarczyk
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
- Applied Optics and Photonics (AOP) Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (W.N.M.); (D.P.H.)
- Correspondence: ; Tel.: +44-(0)-131-451-3105
| | - William N. MacPherson
- Applied Optics and Photonics (AOP) Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (W.N.M.); (D.P.H.)
| | - Duncan P. Hand
- Applied Optics and Photonics (AOP) Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (W.N.M.); (D.P.H.)
| | - M. Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| |
Collapse
|
16
|
Wells JD, Chen W, Hartman RL, Koh CA. Carbon dioxide hydrate in a microfluidic device: Phase boundary and crystallization kinetics measurements with micro-Raman spectroscopy. J Chem Phys 2021; 154:114710. [PMID: 33752371 DOI: 10.1063/5.0039533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Various emerging carbon capture technologies depend on being able to reliably and consistently grow carbon dioxide hydrate, particularly in packed media. However, there are limited kinetic data for carbon dioxide hydrates at this length scale. In this work, carbon dioxide hydrate propagation rates and conversion were evaluated in a high pressure silicon microfluidic device. The carbon dioxide phase boundary was first measured in the microfluidic device, which showed little deviation from bulk predictions. Additionally, measuring the phase boundary takes on the order of hours compared to weeks or longer for larger scale experimental setups. Next, propagation rates of carbon dioxide hydrate were measured in the channels at low subcoolings (<2 K from phase boundary) and moderate pressures (200-500 psi). Growth was dominated by mass transfer limitations until a critical pressure was reached, and reaction kinetics limited growth upon further increases in pressure. Additionally, hydrate conversion was estimated from Raman spectroscopy in the microfluidics channels. A maximum value of 47% conversion was reached within 1 h of a constant flow experiment, nearly 4% of the time required for similar results in a large scale system. The rapid reaction times and high throughput allowed by high pressure microfluidics provide a new way for carbon dioxide gas hydrate to be characterized.
Collapse
Affiliation(s)
- Jonathan D Wells
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Weiqi Chen
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York 11201, USA
| | - Ryan L Hartman
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York 11201, USA
| | - Carolyn A Koh
- Center for Hydrate Research, Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
17
|
Microfluidics-based determination of diffusion coefficient for gas-liquid reaction system with hydrogen peroxide. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Ripken RM, Wood JA, Schlautmann S, Günther A, Gardeniers HJGE, Le Gac S. Towards controlled bubble nucleation in microreactors for enhanced mass transport. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00092f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exact location of bubbles with respect to the catalytic layer impacts the microreactor performance. In this work, we propose to control bubble nucleation using micropits to maximize the microreactor efficiency.
Collapse
Affiliation(s)
- Renée M. Ripken
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology, TechMed Centre, University of Twente, P.O Box 217, 7500 AE, Enschede, The Netherlands
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Jeffery A. Wood
- Soft Matter, Fluidics and Interfaces, MESA+ Institute for Nanotechnology, University of Twente, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Stefan Schlautmann
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Axel Günther
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Han J. G. E. Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology, TechMed Centre, University of Twente, P.O Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
19
|
Nazari M, Davoodabadi A, Huang D, Luo T, Ghasemi H. Transport Phenomena in Nano/Molecular Confinements. ACS NANO 2020; 14:16348-16391. [PMID: 33253531 DOI: 10.1021/acsnano.0c07372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The transport of fluid and ions in nano/molecular confinements is the governing physics of a myriad of embodiments in nature and technology including human physiology, plants, energy modules, water collection and treatment systems, chemical processes, materials synthesis, and medicine. At nano/molecular scales, the confinement dimension approaches the molecular size and the transport characteristics deviates significantly from that at macro/micro scales. A thorough understanding of physics of transport at these scales and associated fluid properties is undoubtedly critical for future technologies. This compressive review provides an elaborate picture on the promising future applications of nano/molecular transport, highlights experimental and simulation metrologies to probe and comprehend this transport phenomenon, discusses the physics of fluid transport, tunable flow by orders of magnitude, and gating mechanisms at these scales, and lists the advancement in the fabrication methodologies to turn these transport concepts into reality. Properties such as chain-like liquid transport, confined gas transport, surface charge-driven ion transport, physical/chemical ion gates, and ion diodes will provide avenues to devise technologies with enhanced performance inaccessible through macro/micro systems. This review aims to provide a consolidated body of knowledge to accelerate innovation and breakthrough in the above fields.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204, United States
| | - Ali Davoodabadi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204, United States
| | - Dezhao Huang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Tengfei Luo
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hadi Ghasemi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204, United States
| |
Collapse
|
20
|
Zhang Z, Song J, Lin YJ, Wang X, Biswal SL. Comparing the Coalescence Rate of Water-in-Oil Emulsions Stabilized with Asphaltenes and Asphaltene-like Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7894-7900. [PMID: 32597186 DOI: 10.1021/acs.langmuir.0c00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Asphaltenes are a significant contributor to flow assurance problems related to crude oil production. Because of their polydispersity, model molecules such as coronene and violanthrone-79 (VO-79) have been used as mimics to represent the physiochemical properties of asphaltenes. This work aims to evaluate the emulsion-stabilization characteristics of fractionated asphaltenes and these two model molecules. Such evaluation is expected to better characterize the stabilizing mechanisms of asphaltenes on water-in-oil emulsions. The coalescence process of water-in-oil emulsion droplets is visualized using a microfluidic flow-focusing geometry. The rate of coalescence events is used as the parameter to assess emulsion stability. Interfacial tension (IFT) and oil/brine zeta potential are measured to help explain the differences in the rates of coalescence. VO-79 is found to be better at stabilizing emulsions as compared to coronene. Although VO-79 and asphaltenes have similar interfacial tension and oil/brine zeta potential values, the rate of coalescence differs significantly. This highlights the difficulty in using model molecules to mimic the transport dynamics of asphaltenes.
Collapse
Affiliation(s)
- Zhuqing Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Song
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Yu-Jiun Lin
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Xinglin Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
21
|
Zhang Y, Khorshidian H, Mohammadi M, Sanati-Nezhad A, Hejazi SH. Functionalized multiscale visual models to unravel flow and transport physics in porous structures. WATER RESEARCH 2020; 175:115676. [PMID: 32193027 DOI: 10.1016/j.watres.2020.115676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The fluid flow, species transport, and chemical reactions in geological formations are the chief mechanisms in engineering the exploitation of fossil fuels and geothermal energy, the geological storage of carbon dioxide (CO2), and the disposal of hazardous materials. Porous rock is characterized by a wide surface area, where the physicochemical fluid-solid interactions dominate the multiphase flow behavior. A variety of visual models with differences in dimensions, patterns, surface properties, and fabrication techniques have been widely utilized to simulate and directly visualize such interactions in porous media. This review discusses the six categories of visual models used in geological flow applications, including packed beds, Hele-Shaw cells, synthesized microchips (also known as microfluidic chips or micromodels), geomaterial-dominated microchips, three-dimensional (3D) microchips, and nanofluidics. For each category, critical technical points (such as surface chemistry and geometry) and practical applications are summarized. Finally, we discuss opportunities and provide a framework for the development of custom-built visual models.
Collapse
Affiliation(s)
- Yaqi Zhang
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hossein Khorshidian
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mehdi Mohammadi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Biological Sciences, University of Calgary, Canada
| | - Amir Sanati-Nezhad
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Centre for Bioengineering Research and Education, University of Calgary, Calgary, Canada
| | - S Hossein Hejazi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
22
|
Yin Y, Guo R, Zhu C, Fu T, Ma Y. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Wei M, Zhou W, Xu F, Wang Y. Nanofluidic Behaviors of Water and Ions in Covalent Triazine Framework (CTF) Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903879. [PMID: 31599122 DOI: 10.1002/smll.201903879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Covalent triazine frameworks (CTFs) hosting arrays of highly ordered sub-2-nm pores are expected to exhibit unusual nanofluidic behaviors, which may enable important applications such as desalination. Herein, nonequilibrium molecular dynamics simulations are applied to investigate transport of water and ions inside two typical CTFs-CTF-1, and CTF-2-having intrinsic pores of 1.2 and 1.5 nm, respectively. Their monolayers exhibit extremely high water permeance but weak ion rejection. CTF multilayers are then investigated. Transport resistances composed of interior and interfacial contribution are correlated with stacking numbers of CTF monolayers to develop equations of predicting water permeance. It is revealed that both the stacking fashion and the number of CTF monolayers forming multilayers significantly influence permeation and ion rejection. Staggered multilayers exhibit much higher ion rejection than eclipsed ones. Staggered CTF-2 multilayers completely reject ions because the interlayer paths between two adjacent staggered monolayers allow only water molecules to pass through. Importantly, it is predicted from the equations that few-layered staggered CTF-2 multilayers, which can be relatively easily produced by experimental methods, exhibit 100% NaCl rejection and up to 100 times higher permeance than commercial reverse osmosis membranes, implying their great potential as building blocks to prepare next-generation desalination membranes.
Collapse
Affiliation(s)
- Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Fang Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, P. R. China
| |
Collapse
|
24
|
Dudek M, Vik EA, Aanesen SV, Øye G. Colloid chemistry and experimental techniques for understanding fundamental behaviour of produced water in oil and gas production. Adv Colloid Interface Sci 2020; 276:102105. [PMID: 31978641 DOI: 10.1016/j.cis.2020.102105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/30/2023]
Abstract
Due to increasing volumes of produced water and environmental concerns related to its discharge, water treatment has become a major challenge during the production of crude oil and natural gas. With continuously stricter regulations for discharging produced water to sea, the operators are obliged to look for ways to improve the treatment processes or re-use the water in a beneficial way, for example as a pressure support during oil recovery (produced water re-injection). To improve the knowledge of the underlying phenomena governing separation processes, detailed information of the composition and interfacial properties of produced water is undoubtedly useful and could provide valuable input for better understanding and improving separation models. This review article summarizes knowledge gained about produced water composition and the most common treatment technologies, which are later used to describe the fundamental phenomena occurring during separation. These colloidal interactions, such as coalescence of oil droplets, bubble-droplet attachment or partitioning of components between oil and water, are of crucial importance for the performance of various technologies and are sometimes overlooked in physical considerations of produced water treatment. The last part of the review deals with the experimental methodologies that are available to study these phenomena, provide data for models and support development of more efficient separation processes.
Collapse
|
25
|
Microfluidic method for determining drop-drop coalescence and contact times in flow. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124265] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Qiu X, Tan SP, Dejam M, Adidharma H. Isochoric measurement of the evaporation point of pure fluids in bulk and nanoporous media using differential scanning calorimetry. Phys Chem Chem Phys 2020; 22:7048-7057. [DOI: 10.1039/d0cp00900h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Evaporation-point measurement of pure fluids in bulk and nanopores using an isochoric heating process.
Collapse
Affiliation(s)
- Xingdong Qiu
- Department of Petroleum Engineering
- College of Engineering and Applied Science
- University of Wyoming
- USA
| | | | - Morteza Dejam
- Department of Petroleum Engineering
- College of Engineering and Applied Science
- University of Wyoming
- USA
| | - Hertanto Adidharma
- Department of Petroleum Engineering
- College of Engineering and Applied Science
- University of Wyoming
- USA
- Department of Chemical Engineering
| |
Collapse
|
27
|
Wlodarczyk KL, Hand DP, Maroto-Valer MM. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci Rep 2019; 9:20215. [PMID: 31882878 PMCID: PMC6934552 DOI: 10.1038/s41598-019-56711-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Conventional manufacturing of glass microfluidic devices is a complex, multi-step process that involves a combination of different fabrication techniques, typically photolithography, chemical/dry etching and thermal/anodic bonding. As a result, the process is time-consuming and expensive, in particular when developing microfluidic prototypes or even manufacturing them in low quantity. This report describes a fabrication technique in which a picosecond pulsed laser system is the only tool required to manufacture a microfluidic device from transparent glass substrates. The laser system is used for the generation of microfluidic patterns directly on glass, the drilling of inlet/outlet ports in glass covers, and the bonding of two glass plates together in order to enclose the laser-generated patterns from the top. This method enables the manufacturing of a fully-functional microfluidic device in a few hours, without using any projection masks, dangerous chemicals, and additional expensive tools, e.g., a mask writer or bonding machine. The method allows the fabrication of various types of microfluidic devices, e.g., Hele-Shaw cells and microfluidics comprising complex patterns resembling up-scaled cross-sections of realistic rock samples, suitable for the investigation of CO2 storage, water remediation and hydrocarbon recovery processes. The method also provides a route for embedding small 3D objects inside these devices.
Collapse
Affiliation(s)
- Krystian L Wlodarczyk
- Research Centre for Carbon Solutions (RCCS), Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom. .,Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom.
| | - Duncan P Hand
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Desgranges C, Delhommelle J. Nucleation of Capillary Bridges and Bubbles in Nanoconfined CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15401-15409. [PMID: 31675236 DOI: 10.1021/acs.langmuir.9b01744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using molecular simulation, we examine the capillary condensation and the capillary evaporation of CO2 in cylindrical nanopores. More specifically, we employ the recently developed μV T-S method to determine the microscopic mechanism associated with these processes and the corresponding free energy profiles. We calculate the free energy barrier for capillary condensation and identify that the key step consists in the nucleation of a liquid bridge of a critical size. Similarly, the free energy maximum found for the capillary evaporation process is found to correspond to the nucleation of a vapor bubble of a critical size. In addition, we assess the impact of the strength of the wall-fluid on the height of the free energy barrier and on the critical size of liquid bridges (condensation process) and vapor bubbles (evaporation process). We observe that the height of the free energy barrier increases with the strength of the wall-fluid interactions. Finally, we build a theoretical model, based on capillary theory, to rationalize our findings. In particular, the simulation results reveal a linear scaling of the free energy barrier with the critical size, in excellent agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry , New York University , New York , New York 10003 , United States
- Department of Chemistry , University of North Dakota , Grand Forks , North Dakota 58202 , United States
| | - Jerome Delhommelle
- Department of Chemistry , New York University , New York , New York 10003 , United States
- Department of Chemistry , University of North Dakota , Grand Forks , North Dakota 58202 , United States
| |
Collapse
|
29
|
Zhang K, Jia N, Li S, Liu L. Rapid Determination of Interfacial Tensions in Nanopores: Experimental Nanofluidics and Theoretical Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8943-8949. [PMID: 31244243 DOI: 10.1021/acs.langmuir.9b01427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A rapid and accurate determination of interfacial tensions (IFTs) in nanopores is scientifically and practically significant, while most existing experimental measurements are restricted to the micrometer scale and theoretical calculations are relatively limited. In this study, six series of the IFT measurement tests for the binary CO2-C10, C1-C10, and N2-C10 mixtures are conducted at temperatures ( T) of 25.0 and 53.0 °C in a self-manufactured nanofluidic system. Moreover, a nanoscale-extended equation-of-state model considering the effects of the confinement, intermolecular interactions, and disjoining pressure and a semianalytical correlation are proposed to calculate the IFTs of the three mixtures in bulk phase and nanopores. Third, a new Tolman length formulation is developed for the IFT corrections in nanopores. Overall, the calculated IFTs from the two theoretical methods agree well with the measured results for most cases in nanopores. On the other hand, effects of the pore scale, temperature, pressure, and fluid composition on the IFTs of the three mixtures are effectively validated and specifically investigated. One suggestion comes from this work that the two theoretical methods for calculating the IFTs are better to be applied concurrently to minimize errors. Another important future work is to include more pore surface parameter (e.g., wettability) into the theoretical model.
Collapse
Affiliation(s)
| | | | - Songyan Li
- College of Petroleum Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | | |
Collapse
|
30
|
Yin Y, Fu T, Zhu C, Guo R, Ma Y, Li H. Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4] aqueous solutions in a microchannel. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Gavoille T, Pannacci N, Bergeot G, Marliere C, Marre S. Microfluidic approaches for accessing thermophysical properties of fluid systems. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00130a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thermophysical properties of fluid systems under high pressure and high temperature conditions are highly desirable as they are used in many industrial processes both from a chemical engineering point of view and to push forward the development of modeling approaches.
Collapse
Affiliation(s)
- Theo Gavoille
- IFP Energies nouvelles
- 92852 Rueil-Malmaison Cedex
- France
- CNRS
- Univ. Bordeaux
| | | | | | | | - Samuel Marre
- CNRS
- Univ. Bordeaux
- Bordeaux INP
- ICMCB
- F-33600 Pessac
| |
Collapse
|
32
|
Qiu X, Tan SP, Dejam M, Adidharma H. Simple and accurate isochoric differential scanning calorimetry measurements: phase transitions for pure fluids and mixtures in nanopores. Phys Chem Chem Phys 2019; 21:224-231. [DOI: 10.1039/c8cp06691d] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A simple way to measure capillary condensation in nanopores for applications in engineering and science.
Collapse
Affiliation(s)
- Xingdong Qiu
- Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming
- Laramie
- USA
| | | | - Morteza Dejam
- Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming
- Laramie
- USA
| | - Hertanto Adidharma
- Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming
- Laramie
- USA
| |
Collapse
|
33
|
Ripken RM, Schlautmann S, Sanders RGP, Gardeniers JGE, Le Gac S. Monitoring phase transition of aqueous biomass model substrates by high-pressure and high-temperature microfluidics. Electrophoresis 2018; 40:563-570. [PMID: 30580450 PMCID: PMC6590653 DOI: 10.1002/elps.201800431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022]
Abstract
Aqueous‐Phase Reforming (APR) is a promising hydrogen production method, where biomass is catalytically reformed under high pressure and high temperature reaction conditions. To eventually study APR, in this paper, we report a high‐pressure and high‐temperature microfluidic platform that can withstand temperatures up to 200°C and pressures up to 30 bar. As a first step, we studied the phase transition of four typical APR biomass model solutions, consisting of 10 wt% of ethylene glycol, glycerol, xylose or xylitol in MilliQ water. After calibration of the set‐up using pure MilliQ water, a small increase in boiling point was observed for the ethylene glycol, xylitol and xylose solutions compared to pure water. Phase transition occurred through either explosive or nucleate boiling mechanisms, which was monitored in real‐time in our microfluidic device. In case of nucleate boiling, the nucleation site could be controlled by exploiting the pressure drop along the microfluidic channel. Depending on the void fraction, various multiphase flow patterns were observed simultaneously. Altogether, this study will not only help to distinguish between bubbles resulting from a phase transition and/or APR product formation, but is also important from a heat and mass transport perspective.
Collapse
Affiliation(s)
- Renée M Ripken
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands.,Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Stefan Schlautmann
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Remco G P Sanders
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Johannes G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
34
|
Qi Z, Xu L, Xu Y, Zhong J, Abedini A, Cheng X, Sinton D. Disposable silicon-glass microfluidic devices: precise, robust and cheap. LAB ON A CHIP 2018; 18:3872-3880. [PMID: 30457137 DOI: 10.1039/c8lc01109e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Si-glass microfluidics have long provided unprecedented precision, robustness and optical clarity. However, chip fabrication is costly (∼500 USD per chip) and in practice, devices are not heavily reused. We present a method to reduce the cost-per-chip by two orders of magnitude (∼5 USD per chip), rendering Si-glass microfluidics disposable for many applications. The strategy is based on reducing the area of the chip and a whole-chip manifolding strategy that achieves reliable high-pressure high-temperature fluid connectivity. The resulting system was validated at 130 bar and 95 °C and demonstrated in both energy and carbon capture applications. We studied heavy oil flooding with brine, polymer, and surfactant polymer solutions and found the surfactant polymer as the most effective solution which recovered ∼80% of the oil with the least amount of injection while maintaining a relatively uniform displacement front. In a carbon capture application, we measured the dilation of an emerging ionic liquid analog, choline chloride with urea, in gaseous and supercritical CO2. Previously restricted to niche microfluidic applications, the approach here brings the established benefits of Si-glass microfluidics to a broad range of applications.
Collapse
Affiliation(s)
- ZhenBang Qi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Wang J, Meng J, Ding G, Shi Z, Wang R, Zhang X. Detection of non-small cell lung cancer cells based on microfluidic polarization microscopic image analysis. Electrophoresis 2018; 40:1202-1211. [PMID: 30378691 DOI: 10.1002/elps.201800284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/05/2018] [Accepted: 10/20/2018] [Indexed: 12/17/2022]
Abstract
In early diagnosis of lung cancer, a polarization microscopy is a powerful tool to obtain the optical information of biological tissues. In this paper, a new microfluidic polarization imaging and analysis method was proposed for the detection and classification of cancer-associated fibroblasts and the two kinds of non-small cell lung cancer cells, A549 and H322. A polarizing microscopy system was constructed based on a commercial microscope to obtain 3*3 Mueller matrix of cells. Based on the Muller matrix decomposition algorithm and analysis in spatial domain and frequency domain, appropriate classification parameters were selected for the characterization of different polarization characteristics of cells. Finally, the logistic regression models based on machine learning were applied to determine optimal feature parameters and classify cells. This method integrated the morphological information of the cells, and the polarization characteristics of the cells in different polarization states. It is for the first time that the polarization microscopic image analysis method has been applied to the detection and classification of non-small cell lung cancer cells. The results show that the presented microfluidic polarization microscopic image analysis method could classify cells effectively. Compared with the Muller matrix measurement and calculation methods, the method proposed in this paper was greatly simplified in both the acquisition of polarized images and the analysis and processing of polarized images.
Collapse
Affiliation(s)
- Yanjuan Wang
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
- Software Institute, Dalian Jiaotong University, Dalian, P. R. China
| | - Junsheng Wang
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Jie Meng
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Gege Ding
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Zhi Shi
- College of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Ruoyu Wang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, P. R. China
| | - Xiaohui Zhang
- College of Environmental and Chemical Engineering, Dalian University, Dalian, P. R. China
| |
Collapse
|
36
|
Capillarity-Driven Oil Flow in Nanopores: Darcy Scale Analysis of Lucas–Washburn Imbibition Dynamics. Transp Porous Media 2018. [DOI: 10.1007/s11242-018-1133-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Zhang YQ, Sanati-Nezhad A, Hejazi SH. Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications. LAB ON A CHIP 2018; 18:285-295. [PMID: 29199291 DOI: 10.1039/c7lc00675f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.
Collapse
Affiliation(s)
- Y Q Zhang
- Subsurface Fluidics and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | | | |
Collapse
|
38
|
Xu Y, Riordon J, Cheng X, Bao B, Sinton D. The Full Pressure-Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. Angew Chem Int Ed Engl 2017; 56:13962-13967. [DOI: 10.1002/anie.201708238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Xu
- Department of Mechanical and Industrial Engineering; University of Toronto; 5 King's College Road Toronto Ontario M5S 3G8 Canada
| | - Jason Riordon
- Department of Mechanical and Industrial Engineering; University of Toronto; 5 King's College Road Toronto Ontario M5S 3G8 Canada
| | - Xiang Cheng
- Department of Mechanical and Industrial Engineering; University of Toronto; 5 King's College Road Toronto Ontario M5S 3G8 Canada
| | - Bo Bao
- Interface Fluidics; 11421 Saskatchewan Dr. NW Edmonton Alberta T6G 2M9 Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering; University of Toronto; 5 King's College Road Toronto Ontario M5S 3G8 Canada
| |
Collapse
|
39
|
Xu Y, Riordon J, Cheng X, Bao B, Sinton D. The Full Pressure-Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yi Xu
- Department of Mechanical and Industrial Engineering; University of Toronto; 5 King's College Road Toronto Ontario M5S 3G8 Canada
| | - Jason Riordon
- Department of Mechanical and Industrial Engineering; University of Toronto; 5 King's College Road Toronto Ontario M5S 3G8 Canada
| | - Xiang Cheng
- Department of Mechanical and Industrial Engineering; University of Toronto; 5 King's College Road Toronto Ontario M5S 3G8 Canada
| | - Bo Bao
- Interface Fluidics; 11421 Saskatchewan Dr. NW Edmonton Alberta T6G 2M9 Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering; University of Toronto; 5 King's College Road Toronto Ontario M5S 3G8 Canada
| |
Collapse
|