1
|
Zhu Z, Zhang Y, Zhang W, Tang D, Zhang S, Wang L, Zou X, Ni Z, Zhang S, Lv Y, Xiang N. High-throughput enrichment of portal venous circulating tumor cells for highly sensitive diagnosis of CA19-9-negative pancreatic cancer patients using inertial microfluidics. Biosens Bioelectron 2024; 259:116411. [PMID: 38781696 DOI: 10.1016/j.bios.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The carbohydrate antigen 19-9 (CA19-9) is commonly used as a representative biomarker for pancreatic cancer (PC); however, it lacks sensitivity and specificity for early-stage PC diagnosis. Furthermore, some patients with PC are negative for CA19-9 (<37 U/mL), which introduces additional limitations to their accurate diagnosis and treatment. Hence, improved methods to accurately detect PC stages in CA19-9-negative patients are warranted. In this study, tumor-proximal liquid biopsy and inertial microfluidics were coupled to enable high-throughput enrichment of portal venous circulating tumor cells (CTCs) and support the effective diagnosis of patients with early-stage PC. The proposed inertial microfluidic system was shown to provide size-based enrichment of CTCs using inertial focusing and Dean flow effects in slanted spiral channels. Notably, portal venous blood samples were found to have twice the yield of CTCs (21.4 cells per 5 mL) compared with peripheral blood (10.9 CTCs per 5 mL). A combination of peripheral and portal CTC data along with CA19-9 results showed to greatly improve the average accuracy of CA19-9-negative PC patients from 47.1% with regular CA19-9 tests up to 87.1%. Hence, portal venous CTC-based microfluidic biopsy can be used with high sensitivity and specificity for the diagnosis of early-stage PC, particularly in CA19-9-negative patients.
Collapse
Affiliation(s)
- Zhixian Zhu
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China
| | - Wenjun Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dezhi Tang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Song Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China
| | - Zhonghua Ni
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China.
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Vieira GB, Howard E, Lankapalli P, Phillips I, Hoffmeister K, Holley J. Stray Magnetic Field Variations and Micromagnetic Simulations: Models for Ni 0.8Fe 0.2 Disks Used for Microparticle Trapping. MICROMACHINES 2024; 15:567. [PMID: 38793140 PMCID: PMC11123457 DOI: 10.3390/mi15050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Patterned micro-scale thin-film magnetic structures, in conjunction with weak (~few tens of Oe) applied magnetic fields, can create energy landscapes capable of trapping and transporting fluid-borne magnetic microparticles. These energy landscapes arise from magnetic field magnitude variations that arise in the vicinity of the magnetic structures. In this study, we examine means of calculating magnetic fields in the local vicinity of permalloy (Ni0.8Fe0.2) microdisks in weak (~tens of Oe) external magnetic fields. To do this, we employ micromagnetic simulations and the resulting calculations of fields. Because field calculation from micromagnetic simulations is computationally time-intensive, we discuss a method for fitting simulated results to improve calculation speed. Resulting stray fields vary dramatically based on variations in micromagnetic simulations-vortex vs. non-vortex micromagnetic results-which can each appear despite identical simulation final conditions, resulting in field strengths that differ by about a factor of two.
Collapse
|
3
|
Radhakrishnan V, Kaifi JT, Suvilesh KN. Circulating Tumor Cells: How Far Have We Come with Mining These Seeds of Metastasis? Cancers (Basel) 2024; 16:816. [PMID: 38398206 PMCID: PMC10887304 DOI: 10.3390/cancers16040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that slough off from the tumor and circulate in the peripheral blood and lymphatic system as micro metastases that eventually results in macro metastases. Through a simple blood draw, sensitive CTC detection from clinical samples has proven to be a useful tool for determining the prognosis of cancer. Recent technological developments now make it possible to detect CTCs reliably and repeatedly from a simple and straightforward blood test. Multicenter trials to assess the clinical value of CTCs have demonstrated the prognostic value of these cancer cells. Studies on CTCs have filled huge knowledge gap in understanding the process of metastasis since their identification in the late 19th century. However, these rare cancer cells have not been regularly used to tailor precision medicine and or identify novel druggable targets. In this review, we have attempted to summarize the milestones of CTC-based research from the time of identification to molecular characterization. Additionally, the need for a paradigm shift in dissecting these seeds of metastasis and the possible future avenues to improve CTC-based discoveries are also discussed.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
4
|
Shah N, Iyer V, Zhang Z, Gao Z, Park J, Yelleswarapu V, Aflatouni F, Charlie Johnson AT, Issadore D. Highly stable integration of graphene Hall sensors on a microfluidic platform for magnetic sensing in whole blood. MICROSYSTEMS & NANOENGINEERING 2023; 9:71. [PMID: 37275264 PMCID: PMC10232500 DOI: 10.1038/s41378-023-00530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 06/07/2023]
Abstract
The detection and analysis of rare cells in complex media such as blood is increasingly important in biomedical research and clinical diagnostics. Micro-Hall detectors (μHD) for magnetic detection in blood have previously demonstrated ultrahigh sensitivity to rare cells. This sensitivity originates from the minimal magnetic background in blood, obviating cumbersome and detrimental sample preparation. However, the translation of this technology to clinical applications has been limited by inherently low throughput (<1 mL/h), susceptibility to clogging, and incompatibility with commercial CMOS foundry processing. To help overcome these challenges, we have developed CMOS-compatible graphene Hall sensors for integration with PDMS microfluidics for magnetic sensing in blood. We demonstrate that these graphene μHDs can match the performance of the best published μHDs, can be passivated for robust use with whole blood, and can be integrated with microfluidics and sensing electronics for in-flow detection of magnetic beads. We show a proof-of-concept validation of our system on a silicon substrate and detect magnetic agarose beads, as a model for cells, demonstrating promise for future integration in clinical applications with a custom CMOS chip.
Collapse
Affiliation(s)
- Nishal Shah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Vasant Iyer
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Zhiping Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Zhaoli Gao
- Department of Biomedical Engineering, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Juhwan Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Venkata Yelleswarapu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - A. T. Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Chemical and Biomolecular, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
5
|
Goldstein I, Alyas S, Asghar W, Ilyas A. Biosensors for the Isolation and Detection of Circulating Tumor Cells (CTCs) in Point-of-Care Settings. MICROMACHINES 2023; 14:mi14051035. [PMID: 37241658 DOI: 10.3390/mi14051035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) are cells that have been shed from tumors and circulate in the bloodstream. These cells can also be responsible for further metastases and the spread of cancer. Taking a closer look and analyzing CTCs through what has come to be known as "liquid biopsy" has immense potential to further researchers' understanding of cancer biology. However, CTCs are very sparse and are therefore difficult to detect and capture. To combat this issue, researchers have attempted to create devices, assays, and further techniques to successfully isolate CTCs for analysis. In this work, new and existing biosensing techniques for CTC isolation, detection, and release/detachment are discussed and compared to evaluate their efficacy, specificity, and cost. Here, we specifically aim to evaluate and identify the potential success of these techniques and devices in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Isaac Goldstein
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Paul D. Schreiber High School, Port Washington, NY 11050, USA
| | - Sobia Alyas
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
6
|
Yang L, Guo H, Hou T, Zhang J, Li F. Metal-mediated Fe 3O 4@polydopamine-aptamer capture nanoprobe coupling multifunctional MXene@Au@Pt nanozyme for direct and portable photothermal analysis of circulating breast cancer cells. Biosens Bioelectron 2023; 234:115346. [PMID: 37148800 DOI: 10.1016/j.bios.2023.115346] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Breast cancer (BC) is the most common cancer in the world and circulating tumor cells (CTCs) are reliable biomarkers for early breast cancer diagnosis in a non-invasive manner. However, effective isolation and sensitive detection of BC-CTCs by portable devices in human blood samples are extremely challenging. Herein, we proposed a highly sensitive and portable photothermal cytosensor for direct capture and quantification of BC-CTCs. To achieve efficient isolation of BC-CTCs, aptamer functionalized Fe3O4@PDA nanoprobe was facilely prepared through Ca2+-mediated DNA adsorption. To further detect the captured BC-CTCs with high sensitivity, multifunctional two-dimensional Ti3C2@Au@Pt nanozyme was synthesized, which not only possessed superior photothermal effect but also exhibited high peroxidase-like activity for catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to produce TMB oxide (oxTMB) with a strong photothermal characteristic, combining with Ti3C2@Au@Pt to synergistically amplify the temperature signal. Moreover, numerous Ti3C2@Au@Pt nanocomposites would be selectively attained on the BC-CTCs surface through multi-aptamer recognition and binding strategy, which further enhanced the specificity and facilitated signal amplification. Therefore, direct separation and highly sensitive detection of BC-CTCs was successfully achieved in human blood samples. More significantly, the controlled release of the captured BC-CTCs without affecting cell viability could be straightforwardly realized by a simple strand displacement reaction. Thus, with the distinct features of portability, high sensitivity, and easy operation, the current method holds great promise for early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jingang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
7
|
Amaral MJ, Oliveira RC, Donato P, Tralhão JG. Pancreatic Cancer Biomarkers: Oncogenic Mutations, Tissue and Liquid Biopsies, and Radiomics-A Review. Dig Dis Sci 2023:10.1007/s10620-023-07904-6. [PMID: 36988759 DOI: 10.1007/s10620-023-07904-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
Pancreatic cancer is one of the most fatal malignancies, as approximately 80% of patients are at advanced stages by the time of diagnosis. The main reason for the poor overall survival is late diagnosis that is partially due to the lack of tools for early-stage detection. In addition, there are several challenges in evaluating response to treatment and predicting prognosis. In this article, we do a review of the most common pancreatic cancer biomarkers with emphasis in new and promising approaches. Liquid biopsies seem to have important clinical applications in early detection, screening, prognosis, and longitudinal monitoring of on-treatment patients. Together with biomarkers in imaging, can represent valuable alternative non-invasive tools in order to achieve a more effective management of pancreatic cancer patients.
Collapse
Affiliation(s)
- Maria João Amaral
- General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Rui Caetano Oliveira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Donato
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Radiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - José Guilherme Tralhão
- General Surgery Department, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Biophysics Institute, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Iyer V, Yang Z, Ko J, Weissleder R, Issadore D. Advancing microfluidic diagnostic chips into clinical use: a review of current challenges and opportunities. LAB ON A CHIP 2022; 22:3110-3121. [PMID: 35674283 PMCID: PMC9798730 DOI: 10.1039/d2lc00024e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microfluidic diagnostic (μDX) technologies miniaturize sensors and actuators to the length-scales that are relevant to biology: the micrometer scale to interact with cells and the nanometer scale to interrogate biology's molecular machinery. This miniaturization allows measurements of biomarkers of disease (cells, nanoscale vesicles, molecules) in clinical samples that are not detectable using conventional technologies. There has been steady progress in the field over the last three decades, and a recent burst of activity catalyzed by the COVID-19 pandemic. In this time, an impressive and ever-growing set of technologies have been successfully validated in their ability to measure biomarkers in clinical samples, such as blood and urine, with sensitivity and specificity not possible using conventional tests. Despite our field's many accomplishments to date, very few of these technologies have been successfully commercialized and brought to clinical use where they can fulfill their promise to improve medical care. In this paper, we identify three major technological trends in our field that we believe will allow the next generation of μDx to have a major impact on the practice of medicine, and which present major opportunities for those entering the field from outside disciplines: 1. the combination of next generation, highly multiplexed μDx technologies with machine learning to allow complex patterns of multiple biomarkers to be decoded to inform clinical decision points, for which conventional biomarkers do not necessarily exist. 2. The use of micro/nano devices to overcome the limits of binding affinity in complex backgrounds in both the detection of sparse soluble proteins and nucleic acids in blood and rare circulating extracellular vesicles. 3. A suite of recent technologies that obviate the manual pre-processing and post-processing of samples before they are measured on a μDX chip. Additionally, we discuss economic and regulatory challenges that have stymied μDx translation to the clinic, and highlight strategies for successfully navigating this challenging space.
Collapse
Affiliation(s)
- Vasant Iyer
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Zijian Yang
- Mechanical Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jina Ko
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts, USA
| | - David Issadore
- Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Edd JF, Mishra A, Smith KC, Kapur R, Maheswaran S, Haber DA, Toner M. Isolation of Circulating Tumor Cells. iScience 2022; 25:104696. [PMID: 35880043 PMCID: PMC9307519 DOI: 10.1016/j.isci.2022.104696] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Circulating tumor cells (CTCs) enter the vasculature from solid tumors and disseminate widely to initiate metastases. Mining the metastatic-enriched molecular signatures of CTCs before, during, and after treatment holds unique potential in personalized oncology. Their extreme rarity, however, requires isolation from large blood volumes at high yield and purity, yet they overlap leukocytes in size and other biophysical properties. Additionally, many CTCs lack EpCAM that underlies much of affinity-based capture, complicating their separation from blood. Here, we provide a comprehensive introduction of CTC isolation technology, by analyzing key separation modes and integrated isolation strategies. Attention is focused on recent progress in microfluidics, where an accelerating evolution is occurring in high-throughput sorting of cells along multiple dimensions. Circulating tumor cells (CTCs) spread cancer through the bloodstream (metastasis) CTC-based liquid biopsy enables minimally invasive sampling of cancer cells in blood Their extreme rarity requires all CTC types to be enriched from large blood volumes CTC isolation technology is analyzed, with a focus on high-throughput microfluidics
Collapse
Affiliation(s)
- Jon F. Edd
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Avanish Mishra
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Ravi Kapur
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- BendBio, Inc., Sharon, MA 02067, USA
| | - Shyamala Maheswaran
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A. Haber
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Bethesda, MD 20815, USA
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
- Corresponding author
| |
Collapse
|
11
|
Li S, Wang K, Hao S, Dang F, Zhang ZQ, Zhang J. Antifouling Gold-Inlaid BSA Coating for the Highly Efficient Capture of Circulating Tumor Cells. Anal Chem 2022; 94:6754-6759. [PMID: 35481373 DOI: 10.1021/acs.analchem.2c00246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Large amounts of coexisting contamination in complex biofluid samples impede the quantified veracity of biomarkers, which is the key problem for disease confirmation. Herein, amyloid-like transformed bovine serum albumin inlaid with gold nanoparticles was used as a coating (BGC) on a substrate composed of silicon nanowires (SW; BGC-SW) under ambient conditions. After modification with the recognition group, BGC-SW could serve as an outstanding platform for the selective separation and sensitive detection of biomarkers in complicated biosamples. First, the BGC on SW with a large surface area exhibits excellent adhesion resistance. The attached amounts of contaminations in biofluids were decreased by over 78% compared with native bovine serum albumin (BSA) as the blocking agent. This is because the phase-transformed BSA coating provides stronger interactions with the SW than bare BSA, which results in a tighter attachment and more uniform coverage of the BGC. Furthermore, the gold matrix laid inside the antiadhesive coating ensures simple cross-linking with the recognition groups to selectively capture various biomarkers in complex biofluids and create a gentle release method. Circulating tumor cells (CTCs) were chosen as template biomarkers to verify the application of A-BGC-SW (BGC-SW modified with sgc8-aptamer) in various separation processes of untreated biofluids. The results showed that approximately six cells could be captured from a 1 mL fresh blood sample containing only 10 CTCs. The easy fabrication and excellent antiadhesion property endow A-BGC-SW with great potential in the field of biological separation.
Collapse
Affiliation(s)
- Shuming Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Ke Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shasha Hao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
12
|
Chen T, Huang C, Wang Y, Wu J. Microfluidic methods for cell separation and subsequent analysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Wang Z, Wu Z, Sun N, Cao Y, Cai X, Yuan F, Zou H, Xing C, Pei R. Antifouling hydrogel-coated magnetic nanoparticles for selective isolation and recovery of circulating tumor cells. J Mater Chem B 2021; 9:677-682. [PMID: 33333542 DOI: 10.1039/d0tb02380a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For reliable downstream molecular analysis, it is crucially important to recover circulating tumor cells (CTCs) from clinical blood samples with high purity and viability. Herein, magnetic nanoparticles coated with an antifouling hydrogel layer based on the polymerization method were developed to realize cell-friendly and efficient CTC capture and recovery. Particularly, the hydrogel layer was fabricated by zwitterionic sulfobetaine methacrylate (SBMA) and methacrylic acid (MAA) cross-linked with N,N-bis(acryloyl)cystamine (BACy), which could not only resist nonspecific adhesion but also gently recover the captured cells by glutathione (GSH) responsiveness. Moreover, the anti-epithelial cell adhesion molecule (anti-EpCAM) antibody was modified onto the surface of the hydrogel to provide high specificity for CTC capture. As a result, 96% of target cells were captured in the mimic clinical blood samples with 5-100 CTCs per mL in 25 min of incubation time. After the GSH treatment, about 96% of the obtained cells were recovered with good viability. Notably, the hydrogel-coated magnetic nanoparticles were also usefully applied to isolate CTCs from the blood samples of cancer patients. The favorable results indicate that the hydrogel-modified magnetic nanoparticles may have a promising opportunity to capture and recover CTCs for subsequent research.
Collapse
Affiliation(s)
- Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jiang R, Agrawal S, Aghaamoo M, Parajuli R, Agrawal A, Lee AP. Rapid isolation of circulating cancer associated fibroblasts by acoustic microstreaming for assessing metastatic propensity of breast cancer patients. LAB ON A CHIP 2021; 21:875-887. [PMID: 33351008 DOI: 10.1039/d0lc00969e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells (i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8+ T cells expressing programmed cell death protein 1 (PD1), higher number of CD4+ T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment.
Collapse
Affiliation(s)
- Ruoyu Jiang
- Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Sudhanshu Agrawal
- Department of Medicine, Division of Basic and Clinical Immunology, University of California, Irvine, CA 92697, USA
| | - Mohammad Aghaamoo
- Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Ritesh Parajuli
- Department of Medicine, Division of Hematology Oncology, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Department of Medicine, Division of Basic and Clinical Immunology, University of California, Irvine, CA 92697, USA
| | - Abraham P Lee
- Biomedical Engineering, University of California, Irvine, CA 92697, USA. and Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Research Progress for the Clinical Application of Circulating Tumor Cells in Prostate Cancer Diagnosis and Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6230826. [PMID: 33506020 PMCID: PMC7814947 DOI: 10.1155/2021/6230826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Prostate cancer is a life-threatening and highly heterogeneous malignancy. In the past decade, circulating tumor cells (CTCs) have been suggested to play a critical role in the occurrence and progression of prostate cancer. In particular, as the “seed” of the cancer metastasis cascade, CTCs determine numerous biological behaviors, such as tumor invasion into adjacent tissues and migration to distant organs. Many studies have shown that CTCs are necessary in the processes of tumor progression, including tumorigenesis, invasion, metastasis, and colonization. Furthermore, CTCs express various biomarkers relevant to prostate cancer and thus can be applied clinically in noninvasive tests. Moreover, CTCs can serve as potential prognostic targets in prostate cancer due to their roles in regulating many processes associated with cancer metastasis. In this review, we discuss the isolation and detection of CTCs as predictive markers of prostate cancer, and we discuss their clinical application in the diagnosis and prognosis of prostate cancer and in monitoring the response to treatment and the prediction of metastasis.
Collapse
|
16
|
Hu D, Liu H, Tian Y, Li Z, Cui X. Sorting Technology for Circulating Tumor Cells Based on Microfluidics. ACS COMBINATORIAL SCIENCE 2020; 22:701-711. [PMID: 33052651 DOI: 10.1021/acscombsci.0c00157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circulating tumor cells (CTCs) carry reliable clinical information for the diagnosis and treatment of cancer that is a malignant disease with a high mortality rate. However, the amount of CTCs in the blood is quite low. To obtain credible clinical information, an efficient method of extracting CTCs is necessary. Microfluidic technology has proven its effectiveness on CTCs separation in recent years. Here, we present a comprehensive review of CTC sorting methods based on microfluidics. Specifically, we introduce four different microfluidic sorting methods of CTCs and compare their advantages and disadvantages. Finally, we summarize the analysis of CTCs based on microfluidics and present a prospective view of future research.
Collapse
Affiliation(s)
- Dayu Hu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Minist Educ, Key Lab Intelligent Comp Med Image MIIC, Shenyang 110169, Liaoning, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| |
Collapse
|
17
|
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States. Pancreatic cancer presents dismal clinical outcomes in patients, and the incidence of pancreatic cancer has continuously increased to likely become the second most common cause of cancer-related deaths by as early as 2030. One of main reasons for the high mortality rate of pancreatic cancer is the lack of tools for early-stage detection. Current practice in detecting and monitoring therapeutic response in pancreatic cancer relies on imaging analysis and invasive endoscopic examination. Liquid biopsy-based analysis of genetic alterations in biofluids has become a fundamental component in the diagnosis and management of cancers. There is an urgent need for scientific and technological advancement to detect pancreatic cancer early and to develop effective therapies. The development of a highly sensitive and specific liquid biopsy tool will require extensive understanding on the characteristics of circulating tumor DNA in biofluids. Here, we have reviewed the current status of liquid biopsy in detecting and monitoring pancreatic cancers and our understanding of circulating tumor DNA that should be considered for the development of a liquid biopsy tool, which will greatly aid in the diagnosis and healthcare of people at risk.
Collapse
|
18
|
Ooi C, Earhart CM, Hughes CE, Lee JR, Wong DJ, Wilson RJ, Rohatgi R, Wang SX. Flow Homogenization Enables a Massively Parallel Fluidic Design for High-throughput and Multiplexed Cell Isolation. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:1900960. [PMID: 33072854 PMCID: PMC7567302 DOI: 10.1002/admt.201900960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Microfluidic devices are widely used for applications such as cell isolation. Currently, the most common method to improve throughput for microfluidic devices involves fabrication of multiple, identical channels in parallel. However, this 'numbering up' only occurs in one dimension, thereby limiting gains in volumetric throughput. In contrast, macro-fluidic devices permit high volumetric flow-rates but lack the finer control of microfluidics. Here, we demonstrate how a micro-pore array design enables flow homogenization across a magnetic cell capture device, thus creating a massively parallel series of micro-scale flow channels with consistent fluidic and magnetic properties, regardless of spatial location. This design enables scaling in 2-dimensions, allowing flow-rates exceeding 100 mL/hr while maintaining >90% capture efficiencies of spiked lung cancer cells from blood in a simulated circulating tumor cell system. Additionally, this design facilitates modularity in operation, which we demonstrate by combining two different devices in tandem for multiplexed cell separation in a single pass with no additional cell losses from processing.
Collapse
Affiliation(s)
- Chinchun Ooi
- Department of Chemical Engineering, Stanford University, Stanford, California, USA; Department of Fluid Dynamics, Institute of High Performance Computing, Singapore
| | - Christopher M. Earhart
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Casey E. Hughes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jung-Rok Lee
- Division of Mechanical and Biomechanical Engineering, Ewha Womans University, Seoul, South Korea
| | - Dawson J. Wong
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Robert J. Wilson
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA; Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Xia L, Yang J, Su R, Zhou W, Zhang Y, Zhong Y, Huang S, Chen Y, Li G. Recent Progress in Fast Sample Preparation Techniques. Anal Chem 2019; 92:34-48. [DOI: 10.1021/acs.analchem.9b04735] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiani Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanjun Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanshu Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
|
21
|
Tian F, Liu C, Lin L, Chen Q, Sun J. Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Engineering microfluidic chip for circulating tumor cells: From enrichment, release to single cell analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ko J, Hemphill M, Yang Z, Beard K, Sewell E, Shallcross J, Schweizer M, Sandsmark DK, Diaz-Arrastia R, Kim J, Meaney D, Issadore D. Multi-Dimensional Mapping of Brain-Derived Extracellular Vesicle MicroRNA Biomarker for Traumatic Brain Injury Diagnostics. J Neurotrauma 2019; 37:2424-2434. [PMID: 30950328 DOI: 10.1089/neu.2018.6220] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The diagnosis and prognosis of traumatic brain injury (TBI) is complicated by variability in the type and severity of injuries and the multiple endophenotypes that describe each patient's response and recovery to the injury. It has been challenging to capture the multiple dimensions that describe an injury and its recovery to provide clinically useful information. To address this challenge, we have performed an open-ended search for panels of microRNA (miRNA) biomarkers, packaged inside of brain-derived extracellular vesicles (EVs), that can be combined algorithmically to accurately classify various states of injury. We mapped GluR2+ EV miRNA across a variety of injury types, injury intensities, history of injuries, and time elapsed after injury, and sham controls in a pre-clinical murine model (n = 116), as well as in clinical samples (n = 36). We combined next-generation sequencing with a technology recently developed by our lab, Track Etched Magnetic Nanopore (TENPO) sorting, to enrich for GluR2+ EVs and profile their miRNA. By mapping and comparing brain-derived EV miRNA between various injuries, we have identified signaling pathways in the packaged miRNA that connect these biomarkers to underlying mechanisms of TBI. Many of these pathways are shared between the pre-clinical model and the clinical samples, and present distinct signatures across different injury models and times elapsed after injury. Using this map of EV miRNA, we applied machine learning to define a panel of biomarkers to successfully classify specific states of injury, paving the way for a prognostic blood test for TBI. We generated a panel of eight miRNAs (miR-150-5p, miR-669c-5p, miR-488-3p, miR-22-5p, miR-9-5p, miR-6236, miR-219a.2-3p, miR-351-3p) for injured mice versus sham mice and four miRNAs (miR-203b-5p, miR-203a-3p, miR-206, miR-185-5p) for TBI patients versus healthy controls.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Hemphill
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zijian Yang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kryshawna Beard
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jamie Shallcross
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa Schweizer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019. [PMID: 31263514 DOI: 10.1063/1.5119052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
25
|
Zhou W, Liu Y, Ran M, Zhao X, Li H, Li H, Wang W. Rapid liquid biopsy for Mohs surgery: rare target cell separation from surgical margin lavage fluid with a high recovery rate and selectivity. LAB ON A CHIP 2019; 19:974-983. [PMID: 30694285 DOI: 10.1039/c8lc01335g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In melanoma surgery, it is difficult to identify residual scattered tumor cells at the surgical margin because of invasive growth. Mohs surgery, widely applied to increase the cure rate and decrease the recurrence rate of melanoma, involves examination of the tissue for tumor cells after tissue removal. Here, we established a liquid biopsy platform for rapid (<5 h), sensitive examination of residual tumor cells at the margin after Mohs surgery using clinical samples from patients with pigment nevus for a demonstration. The design involved highly sensitive, selective rare target cell separation from surgical margin lavage fluid (SMLF) through micropore-arrayed filtration. High recovery rates (86.7% ± 16.3% and 72.7% ± 46.7%, respectively) for separation of spiked 5 A375s (cultured human melanoma cells) and 1 A375 from 1 mL PBS were achieved for this platform. Detection of SMLF samples from patients with pigment nevus was performed, and many (66-7420) Melan-A-positive target cells were successfully recovered and identified, demonstrating the application performance of this rapid liquid biopsy for Mohs surgery in clinical practice. Moreover, a high-selectivity separation of larger target A375 cells from smaller background Jurkat cells was achieved with a high enrichment factor (4.2 ± 1.1). In clinical practice, high selectivity contributes to effective depletion of red blood cells (RBCs), thus ensuring verification of target cells from samples with severe RBC contamination. Furthermore, target cells were obtained with high purity (2.7-35.2%). The capability of this method for rare-cell separation with a high recovery rate and good selectivity may facilitate improvement of performance of Mohs surgery for real clinical practice, including shortening examination time and increasing detection sensitivity.
Collapse
Affiliation(s)
- Wenbo Zhou
- Institute of Microelectronics, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Li T, Xu M, Zhang W, Xiong Y, Nie L, Wang Q, Li H, Wang W. A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. LAB ON A CHIP 2018; 19:68-78. [PMID: 30516210 DOI: 10.1039/c8lc01048j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid biopsy techniques for rare tumor cell separation from body fluids have shown enormous promise in cancer detection and prognosis monitoring. This work established a high-throughput liquid biopsy platform with a high recovery rate and a high cell viability based on a previously reported 2.5D micropore-arrayed filtration membrane. Thanks to its high porosity (>40.2%, edge-to-edge space between the adjacent micropores <4 μm), the achieved filtration throughputs can reach >110 mL min-1 for aqueous samples and >17 mL min-1 for undiluted whole blood, only driven by gravity with no need for any extra pressure loading. The recoveries of rare lung tumor cells (A549s) spiked in PBS (10 mL), unprocessed BALF (10 mL) and whole blood (5 mL) show high recovery rates (88.0 ± 3.7%, 86.0 ± 5.3% and 83.2 ± 6.2%, respectively, n = 5 for every trial) and prove the high performance of this platform. Successful detection of circulating tumor cells (CTCs) from whole blood samples (5 mL) of lung cancer patients (n = 5) was demonstrated. In addition, it was both numerically and experimentally proved that a small edge-to-edge space was significant to improve the viability of the recovered cells and the purity of the target cell recovery, which was reported for the first time to the best of the authors' knowledge. This high-throughput technique will expand the detecting targets of liquid biopsy from the presently focused CTCs in whole blood to the exfoliated tumor cells (ETCs) in other large-volume clinical samples, such as BALF, urine and pleural fluid. Meanwhile, the technique is easy to operate and ready for integration with other separation and analysis tools to fulfill a powerful system for practical clinical applications of liquid biopsy.
Collapse
Affiliation(s)
- Yaoping Liu
- Institute of Microelectronics, Peking University, 100871, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Song Z, Li M, Li B, Yan Y, Song Y. Automatic detecting and counting magnetic beads-labeled target cells from a suspension in a microfluidic chip. Electrophoresis 2018; 40:897-905. [DOI: 10.1002/elps.201800345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Zhenyu Song
- Department of Radiotherapy; Jiaozhou Central Hospital; Qingdao P. R. China
| | - Mengqi Li
- Department of Mechanical and Mechatronics Engineering; University of Waterloo; Waterloo ON Canada
| | - Bao Li
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| | - Yimo Yan
- Department of Biomedical Engineering; School of Medicine; Tsinghua University; Beijing P. R. China
- Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Yongxin Song
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| |
Collapse
|
28
|
Zou D, Cui D. Advances in isolation and detection of circulating tumor cells based on microfluidics. Cancer Biol Med 2018; 15:335-353. [PMID: 30766747 PMCID: PMC6372907 DOI: 10.20892/j.issn.2095-3941.2018.0256] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 01/09/2023] Open
Abstract
Circulating tumor cells (CTCs) are the cancer cells that circulate in the peripheral blood after escaping from the original or metastatic tumors. CTCs could be used as non-invasive source of clinical information in early diagnosis of cancer and evaluation of cancer development. In recent years, CTC research has become a hotspot field wherein many novel CTC detection technologies based on microfluidics have been developed. Great advances have been made that exhibit obvious technical advantages, but cannot yet satisfy the current clinical requirements. In this study, we review the main advances in isolation and detection methods of CTC based on microfluidics research over several years, propose five technical indicators for evaluating these methods, and explore the application prospects. We also discuss the concepts, issues, approaches, advantages, limitations, and challenges with an aim of stimulating a broader interest in developing microfluidics-based CTC detection technology.
Collapse
Affiliation(s)
- Dan Zou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Ko J, Bhagwat N, Black T, Yee SS, Na YJ, Fisher S, Kim J, Carpenter EL, Stanger BZ, Issadore D. miRNA Profiling of Magnetic Nanopore-Isolated Extracellular Vesicles for the Diagnosis of Pancreatic Cancer. Cancer Res 2018; 78:3688-3697. [PMID: 29735554 DOI: 10.1158/0008-5472.can-17-3703] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022]
Abstract
Improved diagnostics for pancreatic ductal adenocarcinoma (PDAC) to detect the disease at earlier, curative stages and to guide treatments is crucial to progress against this disease. The development of a liquid biopsy for PDAC has proven challenging due to the sparsity and variable phenotypic expression of circulating biomarkers. Here we report methods we developed for isolating specific subsets of extracellular vesicles (EV) from plasma using a novel magnetic nanopore capture technique. In addition, we present a workflow for identifying EV miRNA biomarkers using RNA sequencing and machine-learning algorithms, which we used in combination to classify distinct cancer states. Applying this approach to a mouse model of PDAC, we identified a biomarker panel of 11 EV miRNAs that could distinguish mice with PDAC from either healthy mice or those with precancerous lesions in a training set of n = 27 mice and a user-blinded validation set of n = 57 mice (88% accuracy in a three-way classification). These results provide strong proof-of-concept support for the feasibility of using EV miRNA profiling and machine learning for liquid biopsy.Significance: These findings present a panel of extracellular vesicle miRNA blood-based biomarkers that can detect pancreatic cancer at a precancerous stage in a transgenic mouse model. Cancer Res; 78(13); 3688-97. ©2018 AACR.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neha Bhagwat
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taylor Black
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie S Yee
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Young-Ji Na
- Department of Medicine, Division of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Stephen Fisher
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica L Carpenter
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Cheng D, Yu Y, Han C, Cao M, Yang G, Liu J, Chen X, Peng Z. A simple microdevice for single cell capture, array, release, and fast staining using oscillatory method. BIOMICROFLUIDICS 2018; 12:034105. [PMID: 29861808 PMCID: PMC5955720 DOI: 10.1063/1.5025677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Microchips that perform single cell capture, array, and identification have become powerful tools for single cell studies, which can reveal precise underlying mechanisms among bulk cell populations. However, current single cell capture and on-chip immunostaining methods consume more time and reagent than desired. To optimize this technology, we designed a novel trap structure for single cell capture, array, and release, and meanwhile an oscillatory method was used to perform rapid on-chip cell immunostaining. The trap structure array used equal distribution of lateral flow to achieve single cell array in high velocity flows and decrease the risk of clogging. A length of glass capillary with a sealed bubble was inserted into the outlet so that it could act in a manner analogous to that of a capacitor in an RC circuit. By applying one periodic air pressure to the inlet, oscillation motion was generated, which significantly enhanced the on-chip reaction efficiency. In addition, the oscillation performance could be easily regulated by changing the length of the capillary. The trapped cells could maintain their positions during oscillation; hence, they were able to be tracked in real time. Through our trap microchip, 12 μm microbeads were successfully trapped to form a microarray with a capture efficiency of ∼92.7% and 2 μm microbeads were filtered. With an optimized oscillation condition (Ppush = 0.03 MPa, f = 1 Hz, L = 3 cm), fast on-chip immunostaining was achieved with the advantages of less time (5 min) and reagent (2 μl) consumption. The effectiveness of this method was demonstrated through quantitative microbead and qualitative Caco-2 cell experiments. The device is simple, flexible, and efficient, which we believe provides a promising approach to single cell heterogeneity studies, drug screening, and clinical diagnosis.
Collapse
Affiliation(s)
- Dantong Cheng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mengjia Cao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
31
|
Bhagwat N, Dulmage K, Pletcher CH, Wang L, DeMuth W, Sen M, Balli D, Yee SS, Sa S, Tong F, Yu L, Moore JS, Stanger BZ, Dixon EP, Carpenter EL. An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci Rep 2018; 8:5035. [PMID: 29568081 PMCID: PMC5864750 DOI: 10.1038/s41598-018-23217-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Comprehensive molecular analysis of rare circulating tumor cells (CTCs) and cell clusters is often hampered by low throughput and purity, as well as cell loss. To address this, we developed a fully integrated platform for flow cytometry-based isolation of CTCs and clusters from blood that can be combined with whole transcriptome analysis or targeted RNA transcript quantification. Downstream molecular signature can be linked to cell phenotype through index sorting. This newly developed platform utilizes in-line magnetic particle-based leukocyte depletion, and acoustic cell focusing and washing to achieve >98% reduction of blood cells and non-cellular debris, along with >1.5 log-fold enrichment of spiked tumor cells. We could also detect 1 spiked-in tumor cell in 1 million WBCs in 4/7 replicates. Importantly, the use of a large 200μm nozzle and low sheath pressure (3.5 psi) minimized shear forces, thereby maintaining cell viability and integrity while allowing for simultaneous recovery of single cells and clusters from blood. As proof of principle, we isolated and transcriptionally characterized 63 single CTCs from a genetically engineered pancreatic cancer mouse model (n = 12 mice) and, using index sorting, were able to identify distinct epithelial and mesenchymal sub-populations based on linked single cell protein and gene expression.
Collapse
Affiliation(s)
- Neha Bhagwat
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keely Dulmage
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Charles H Pletcher
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Wang
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - William DeMuth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Moen Sen
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Balli
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie S Yee
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silin Sa
- BD Biosciences, San Jose, CA, USA
| | - Frances Tong
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | | | - Jonni S Moore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric P Dixon
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Erica L Carpenter
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Affiliation(s)
- Sonja M. Weiz
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
- Material Systems for Nanoelectronics; Chemnitz University of Technology; Reichenhainer Straße 70 09107 Chemnitz Germany
| |
Collapse
|
33
|
Ko J, Bhagwat N, Yee SS, Ortiz N, Sahmoud A, Black T, Aiello NM, McKenzie L, O'Hara M, Redlinger C, Romeo J, Carpenter EL, Stanger BZ, Issadore D. Combining Machine Learning and Nanofluidic Technology To Diagnose Pancreatic Cancer Using Exosomes. ACS NANO 2017; 11:11182-11193. [PMID: 29019651 DOI: 10.1021/acsnano.7b05503] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Circulating exosomes contain a wealth of proteomic and genetic information, presenting an enormous opportunity in cancer diagnostics. While microfluidic approaches have been used to successfully isolate cells from complex samples, scaling these approaches for exosome isolation has been limited by the low throughput and susceptibility to clogging of nanofluidics. Moreover, the analysis of exosomal biomarkers is confounded by substantial heterogeneity between patients and within a tumor itself. To address these challenges, we developed a multichannel nanofluidic system to analyze crude clinical samples. Using this platform, we isolated exosomes from healthy and diseased murine and clinical cohorts, profiled the RNA cargo inside of these exosomes, and applied a machine learning algorithm to generate predictive panels that could identify samples derived from heterogeneous cancer-bearing individuals. Using this approach, we classified cancer and precancer mice from healthy controls, as well as pancreatic cancer patients from healthy controls, in blinded studies.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Neha Bhagwat
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Stephanie S Yee
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Natalia Ortiz
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Amine Sahmoud
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Taylor Black
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Nicole M Aiello
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Lydie McKenzie
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Mark O'Hara
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Colleen Redlinger
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Janae Romeo
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Erica L Carpenter
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Ben Z Stanger
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - David Issadore
- Department of Bioengineering and ∥Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Division of Gastroenterology and §Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine and ⊥Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Booth MA, Gowers SAN, Leong CL, Rogers ML, Samper IC, Wickham AP, Boutelle MG. Chemical Monitoring in Clinical Settings: Recent Developments toward Real-Time Chemical Monitoring of Patients. Anal Chem 2017; 90:2-18. [PMID: 29083872 DOI: 10.1021/acs.analchem.7b04224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marsilea A Booth
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Sally A N Gowers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Chi Leng Leong
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Michelle L Rogers
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Isabelle C Samper
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Aidan P Wickham
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| | - Martyn G Boutelle
- Department of Bioengineering, Imperial College London , London, SW7 2AZ, United Kingdom
| |
Collapse
|
35
|
Wang Y, Zhou Y, Hu Z. The Functions of Circulating Tumor Cells in Early Diagnosis and Surveillance During Cancer Advancement. J Transl Int Med 2017; 5:135-138. [PMID: 29085785 DOI: 10.1515/jtim-2017-0029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yuqiao Wang
- The Cooper Union for the Advancement of Science and Art, New York, USA
| | - Ying Zhou
- Center for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhiyuan Hu
- Center for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|