1
|
Matsoukas MT, Radomsky T, Panagiotopoulos V, Preez RD, Papadourakis M, Tsianakas K, Millar RP, Anderson RC, Spyroulias GA, Newton CL. Identification of Small-Molecule Antagonists Targeting the Growth Hormone Releasing Hormone Receptor (GHRHR). J Chem Inf Model 2024; 64:7056-7067. [PMID: 39207455 PMCID: PMC11423342 DOI: 10.1021/acs.jcim.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The growth hormone-releasing hormone receptor (GHRHR) belongs to Class B1 of G protein-coupled receptors (GPCRs). Class B1 GPCR peptides such, as growth hormone-releasing hormone (GHRH), have been proposed to bind in a two-step model, where first the C-terminal region of the peptide interacts with the extracellular domain of the receptor and, subsequently, the N-terminus interacts with the seven transmembrane domain of the receptor, resulting in activation. The GHRHR has recently been highlighted as a promising drug target toward several types of cancer and has been shown to be overexpressed in prostate, breast, pancreatic, and ovarian cancer. Indeed, peptide GHRHR antagonists have displayed promising results in many cancer models. However, no nonpeptide GHRHR-targeting compounds have yet been identified. We have utilized several computational tools to target GHRHR and identify potential small-molecule compounds directed at this receptor. These compounds were validated in vitro using a cyclic adenosine monophosphate (cAMP) ELISA to measure activity at the GHRHR. In vitro results suggest that several of the novel small-molecule compounds could inhibit GHRH-induced cAMP accumulation. Preliminary analysis of the specificity/selectivity of one of the most effective hit compounds indicated that the effect seen was via inhibition of the GHRHR. We therefore report the first nonpeptide antagonists of GHRHR and propose a structural basis for inhibition induced by the compounds, which may assist in the future design of lead GHRHR compounds for treating disorders attributed to dysregulated/aberrant GHRHR signaling.
Collapse
Affiliation(s)
| | - Tarryn Radomsky
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | | | - Robin du Preez
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | | | | | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, U.K
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, U.K
| | - Ross C Anderson
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| | - Georgios A Spyroulias
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras 26500, Greece
| | - Claire L Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, U.K
| |
Collapse
|
2
|
Halmos G, Szabo Z, Juhasz E, Schally AV. Signaling mechanism of growth hormone-releasing hormone receptor. VITAMINS AND HORMONES 2023; 123:1-26. [PMID: 37717982 DOI: 10.1016/bs.vh.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The hypothalamic peptide growth hormone-releasing hormone (GHRH) stimulates the secretion of growth hormone (GH) from the pituitary through binding and activation of the pituitary type of GHRH receptor (GHRH-R), which belongs to the family of G protein-coupled receptors with seven potential membrane-spanning domains. Splice variants of GHRH-Rs (SV) in human tumors and other extra pituitary tissues were identified and their cDNA was sequenced. Among the SVs, splice variant 1 (SV1) possesses the greatest similarity to the full-length GHRH-R and remains functional by eliciting cAMP signaling and mitogenic activity upon GHRH stimulation. A large body of work have evaluated potential clinical applications of agonists and antagonists of GHRH in diverse fields, including endocrinology, oncology, cardiology, diabetes, obesity, metabolic dysfunctions, Alzheimer's disease, ophthalmology, wound healing and other applications. In this chapter, we briefly review the expression and potential function of GHRH-Rs and their SVs in various tissues and also elucidate and summarize the activation, molecular mechanism and signalization pathways of these receptors. Therapeutic applications of GHRH analogs are also discussed.
Collapse
Affiliation(s)
- Gabor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, United States.
| | - Zsuzsanna Szabo
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Eva Juhasz
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrew V Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, United States; Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States; Department of Medicine, Divisions of Hematology-Oncology and Endocrinology, Miller School of Medicine, University of Miami, Miami, FL, United States; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| |
Collapse
|
5
|
Zhou F, Zhang H, Cong Z, Zhao LH, Zhou Q, Mao C, Cheng X, Shen DD, Cai X, Ma C, Wang Y, Dai A, Zhou Y, Sun W, Zhao F, Zhao S, Jiang H, Jiang Y, Yang D, Eric Xu H, Zhang Y, Wang MW. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun 2020; 11:5205. [PMID: 33060564 PMCID: PMC7567103 DOI: 10.1038/s41467-020-18945-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) regulates the secretion of growth hormone that virtually controls metabolism and growth of every tissue through its binding to the cognate receptor (GHRHR). Malfunction in GHRHR signaling is associated with abnormal growth, making GHRHR an attractive therapeutic target against dwarfism (e.g., isolated growth hormone deficiency, IGHD), gigantism, lipodystrophy and certain cancers. Here, we report the cryo-electron microscopy (cryo-EM) structure of the human GHRHR bound to its endogenous ligand and the stimulatory G protein at 2.6 Å. This high-resolution structure reveals a characteristic hormone recognition pattern of GHRH by GHRHR, where the α-helical GHRH forms an extensive and continuous network of interactions involving all the extracellular loops (ECLs), all the transmembrane (TM) helices except TM4, and the extracellular domain (ECD) of GHRHR, especially the N-terminus of GHRH that engages a broad set of specific interactions with the receptor. Mutagenesis and molecular dynamics (MD) simulations uncover detailed mechanisms by which IGHD-causing mutations lead to the impairment of GHRHR function. Our findings provide insights into the molecular basis of peptide recognition and receptor activation, thereby facilitating the development of structure-based drug discovery and precision medicine. Growth hormone-releasing hormone (GHRH) controls metabolism and tissue growth through binding to the cognate receptor (GHRHR). Here authors report the structure of the human GHRHR bound to its endogenous ligand and the stimulatory G protein which reveals a characteristic hormone recognition pattern of GHRH by GHRHR.
Collapse
Affiliation(s)
- Fulai Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Huibing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhaotong Cong
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Li-Hua Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Chunyou Mao
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Dan-Dan Shen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Cheng Ma
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuzhe Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Yan Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Wen Sun
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fenghui Zhao
- School of Pharmacy, Fudan University, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
6
|
Lou A, Jin T, Zhang R, Ji J, Xiang S, Cui C, Yu L, Guan L. The effect of miR-93 on GH secretion in pituitary cells of Yanbian yellow cattle. Anim Biotechnol 2019; 32:292-299. [PMID: 31697176 DOI: 10.1080/10495398.2019.1687092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Yanbian yellow cattle breeding is limited by slow growth. We previously found that the miRNA miR-93 was differentially expressed between the blood exosomes of Yanbian yellow cattle and Han Yan cattle, which differ in growth characteristics. In this experiment, we evaluated the effects of miR-93 on growth hormone (GH) secretion by pituitary cells of Yanbian yellow cattle using qPCR, Western blot, Targetscan and RNA hybrid analysis software and Dual-Luciferase reporter gene system. The results showed that miR-93 targeted 3' UTR of GHRHR(growth hormone releasing hormone receptor); GH mRNA and protein levels in pituitary cells of Yanbian yellow cattle were significantly lower in the miR-93-mi group than in the NC control group (p < 0.01), while GH mRNA and protein levels were higher in the miR-93-in group than in the iNC control group, but the difference was not significant (p > 0.05); GHRHR mRNA and protein levels were significantly lower in the miR-93-mi group than in the NC control group (p < 0.01), while GHRHR protein levels were significantly higher in the miR-93-in group than in the iNC control group (p < 0.05), but there was no significant difference about GHRHR mRNA level between two groups (p > 0.05). These results prove that miR-93 regulates GH secretion in pituitary cells via GHRHR.
Collapse
Affiliation(s)
- Angang Lou
- Agriculture College, Yanbian University, Yanji, China
| | - Taihua Jin
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Rui Zhang
- Agriculture College, Yanbian University, Yanji, China
| | - Jiuxiu Ji
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Siyu Xiang
- Agriculture College, Yanbian University, Yanji, China
| | - Changyan Cui
- Agriculture College, Yanbian University, Yanji, China
| | - Longzheng Yu
- Agriculture College, Yanbian University, Yanji, China
| | - Lizeng Guan
- College of Agriculture and Forestry Science, Linyi University, Linyi, China.,Agriculture College, Yanbian University, Yanji, China
| |
Collapse
|
8
|
Sagvekar P, Kumar P, Mangoli V, Desai S, Mukherjee S. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin Epigenetics 2019; 11:61. [PMID: 30975191 PMCID: PMC6458760 DOI: 10.1186/s13148-019-0657-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Women with polycystic ovary syndrome (PCOS) manifest a host of ovarian defects like impaired folliculogenesis, anovulation, and poor oocyte quality, which grossly affect their reproductive health. Addressing the putative epigenetic anomalies that tightly regulate these events is of foremost importance in this disorder. We therefore aimed to carry out DNA methylome profiling of cumulus granulosa cells and assess the methylation and transcript expression profiles of a few differentially methylated genes contributing to ovarian defects in PCOS. A total of 20 controls and 20 women with PCOS were selected from a larger cohort of women undergoing IVF, after carefully screening their sera and follicular fluids for hormonal and biochemical parameters. DNA extracted from cumulus granulosa cells of three women each, from control and PCOS groups was subjected to high-throughput, next generation bisulfite sequencing, using the Illumina HiSeq 2500® platform. Remaining samples were used for the validation of methylation status of some identified genes by pyrosequencing, and the transcript expression profiles of these genes were assessed by quantitative real-time PCR. Results In all, 6486 CpG sites representing 3840 genes associated with Wnt signaling, G protein receptor, endothelin/integrin signaling, angiogenesis, chemokine/cytokine-mediated inflammation, etc., showed differential methylation in PCOS. Hypomethylation was noted in 2977 CpGs representing 2063 genes while 2509 CpGs within 1777 genes showed hypermethylation. Methylation differences were also noted in noncoding RNAs regulating several ovarian functions that are dysregulated in PCOS. Few differentially methylated genes such as aldo-keto reductase family 1 member C3, calcium-sensing receptor, resistin, mastermind-like domain 1, growth hormone-releasing hormone receptor and tumor necrosis factor, which predominantly contribute to hyperandrogenism, premature luteolysis, and oocyte development defects, were explored as novel epigenetic candidates in mediating ovarian dysfunction. Methylation profiles of these genes matched with our NGS findings, and their transcript expression patterns correlated with the gene hypo- or hypermethylation status. Conclusion Our findings suggest that the epigenetic dysregulation of genes involved in important processes associated with follicular development may contribute to ovarian defects observed in women with PCOS. Electronic supplementary material The online version of this article (10.1186/s13148-019-0657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja Sagvekar
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India
| | - Pankaj Kumar
- Colin Jamura Lab, Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), GKVK, Bellary Road, Bangalore, 560065, India
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai, Maharashtra, 400007, India
| | - Sadhana Desai
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai, Maharashtra, 400007, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|