1
|
Bisoi A, Sarkar S, Singh PC. Loop nucleobases-dependent folding of G-quadruplex in normal and cancer cell-mimicking KCl microenvironments. Int J Biol Macromol 2024; 265:131050. [PMID: 38522708 DOI: 10.1016/j.ijbiomac.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
In this study, the folding of G-quadruplex (G4) from the telomeric DNA sequences having loop nucleobases of different chemical natures, numbers, and arrangements in 10 mM and 100 mM KCl salt conditions mimicking the cancerous and normal KCl salt microenvironments have been investigated. The data suggest that the structure and stability of the G4 are highly dependent on the KCl salt concentration. In general, the conformational flexibility of the folded G4 is higher in KCl salt relevant to cancer than in the normal case for any loop arrangements with the same number of nucleobases. The stability of the G4 decreases with the increase in the number of loop nucleobases for both salt conditions. However, the decrease in the stability of G4 having adenine in the loop region is significantly higher than the case of thymine, particularly more prominent in the KCl salt relevant to the cancer. The topology of the folded G4 and its stability also depend delicately on the permutation of the nucleobases in the loop and the salt concentrations for a particular sequence. The findings indicate that the structure and stability of G4 are noticeably different in KCl salt relevant to physiological and cancer conditions.
Collapse
Affiliation(s)
- Asim Bisoi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
2
|
Bowleg JL, Mikek CG, Gwaltney SR. Computed interactions of berenil with restricted foldamers of c-MYC DNA G-quadruplexes. J Biomol Struct Dyn 2024; 42:2162-2169. [PMID: 37286380 DOI: 10.1080/07391102.2023.2217913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/16/2023] [Indexed: 06/09/2023]
Abstract
G-quadruplexes (G4s) are secondary four-stranded DNA helical structures made up of guanine-rich nucleic acids that can assemble in the promoter regions of multiple genes under the appropriate conditions. Stabilization of G4 structures by small molecules can regulate transcription in non-telomeric regions, including in proto-oncogenes and promoter regions, contributing to anti-proliferative and anti-tumor activities. Because G4s are detectable in cancer cells but not in normal cells, they make excellent drug discovery targets. Diminazene, DMZ (or berenil), has been shown to be an efficient G-quadruplex binder. Due to the stability of the folding topology, G-quadruplex structures are frequently found in the promotor regions of oncogenes and may play a regulatory role in gene activation. Using molecular docking and molecular dynamics simulations on several different binding poses, we have studied DMZ binding toward multiple G4 topologies of the c-MYC G-quadruplex. DMZ binds preferentially to G4s that have extended loops and flanking bases. This preference arises from its interactions with the loops and the flanking nucleotides, which were not found in the structure lacking extended regions. The binding to the G4s with no extended regions instead occurred mostly through end stacking. All binding sites for DMZ were confirmed by 100 ns molecular dynamics simulations and through binding enthalpies calculated using the MM-PBSA method. The primary driving forces were electrostatic, as the cationic DMZ interacts with the anionic phosphate backbone, and through van der Waals interactions, which primarily contributed in end stacking interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jerrano L Bowleg
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| | - Clinton G Mikek
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, College Town, MS, USA
| |
Collapse
|
3
|
Dastan D, Soleymanekhtiari S, Ebadi A. Peptidic Compound as DNA Binding Agent: In Silico Fragment-based Design, Machine Learning, Molecular Modeling, Synthesis, and DNA Binding Evaluation. Protein Pept Lett 2024; 31:332-344. [PMID: 38693737 DOI: 10.2174/0109298665305131240404072542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Cancer remains a global burden, with increasing mortality rates. Current cancer treatments involve controlling the transcription of malignant DNA genes, either directly or indirectly. DNA exhibits various structural forms, including the G-quadruplex (G4), a secondary structure in guanine-rich regions. G4 plays a crucial role in cellular processes by regulating gene expression and telomerase function. Researchers have recently identified G4-stabilizing binding agents as promising anti-cancer compounds. Additionally, peptides have emerged as effective anticancer pharmaceuticals due to their ability to form multiple hydrogen bonds, electrostatic interactions, and van der Waals forces. These properties enable peptides to bind to specific areas of DNA chains selectively. However, despite these advancements, designing G4-binding peptides remains challenging due to a lack of comprehensive information. OBJECTIVE In our present study, we employed an in silico fragment-based approach to design G4- binding peptides. This innovative method combines machine learning classification, molecular docking, and dynamics simulation. METHODS AutoDock Vina and Gromacs performed molecular docking and MD simulation, respectively. The machine learning algorithm was implemented by Scikit-learn. Peptide synthesis was performed using the SPPS method. The DNA binding affinity was measured by applying spectrophotometric titration. RESULTS As a result of this approach, we identified a high-scoring peptide (p10; sequence: YWRWR). The association constant (Ka) between p10 and the ctDNA double helix chain was 4.45 × 105 M-1. Molecular modeling studies revealed that p10 could form a stable complex with the G4 surface. CONCLUSION The obtained Ka value of 4.45 × 105 M-1 indicates favorable interactions. Our findings highlight the role of machine learning and molecular modeling approaches in designing new G4-binding peptides. Further research in this field could lead to targeted treatments that exploit the unique properties of G4 structures.
Collapse
Affiliation(s)
- Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Soleymanekhtiari
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Cadoni E, De Paepe L, Colpaert G, Tack R, Waegeman D, Manicardi A, Madder A. A red light-triggered chemical tool for sequence-specific alkylation of G-quadruplex and I-motif DNA. Nucleic Acids Res 2023; 51:4112-4125. [PMID: 36971129 PMCID: PMC10201448 DOI: 10.1093/nar/gkad189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/03/2023] [Accepted: 03/12/2023] [Indexed: 08/21/2023] Open
Abstract
The importance of non-canonical DNA structures such as G-quadruplexes (G4) and intercalating-motifs (iMs) in the fine regulation of a variety of cellular processes has been recently demonstrated. As the crucial roles of these structures are being unravelled, it is becoming more and more important to develop tools that allow targeting these structures with the highest possible specificity. While targeting methodologies have been reported for G4s, this is not the case for iMs, as evidenced by the limited number of specific ligands able to bind the latter and the total absence of selective alkylating agents for their covalent targeting. Furthermore, strategies for the sequence-specific covalent targeting of G4s and iMs have not been reported thus far. Herein, we describe a simple methodology to achieve sequence-specific covalent targeting of G4 and iM DNA structures based on the combination of (i) a peptide nucleic acid (PNA) recognizing a specific sequence of interest, (ii) a pro-reactive moiety enabling a controlled alkylation reaction, and (iii) a G4 or iM ligand orienting the alkylating warhead to the reactive residues. This multi-component system allows for the targeting of specific G4 or iM sequences of interest in the presence of competing DNA sequences and under biologically relevant conditions.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Gertjan Colpaert
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Ruben Tack
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Dries Waegeman
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Alex Manicardi
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
5
|
Biswas S, Basak S, Samui S, Pasadi S, Muniyappa K, Naskar J. Co‐Assembly of Peptide with G‐Quadruplex DNA: A Strategic Approach to Develop Anticancer Therapeutics. ChemistrySelect 2023. [DOI: 10.1002/slct.202203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Soumi Biswas
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Shubhanwita Basak
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Satyabrata Samui
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Sanjeev Pasadi
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - K. Muniyappa
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| |
Collapse
|
6
|
Mohamed HI, Gao C, Gui Z, Song Z, Wei D. A novel fluorescent probe with a pyrazolo[4,3- c]quinoline core selectively recognizes c-MYC promoter G-quadruplexes. NEW J CHEM 2022. [DOI: 10.1039/d1nj00098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aptamer combined with a c-MYC-selective fluorophore could work as the fluorescent core of nucleic acid mimics of fluorescent proteins to locate and image functional biomolecules in cells.
Collapse
Affiliation(s)
- Hany I. Mohamed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Chao Gao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhikun Gui
- College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zibing Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Lyu J, Shao R, Kwong Yung PY, Elsässer SJ. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res 2021; 50:e13. [PMID: 34792172 PMCID: PMC8860588 DOI: 10.1093/nar/gkab1073] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
Single-stranded genomic DNA can fold into G-quadruplex (G4) structures or form DNA:RNA hybrids (R loops). Recent evidence suggests that such non-canonical DNA structures affect gene expression, DNA methylation, replication fork progression and genome stability. When and how G4 structures form and are resolved remains unclear. Here we report the use of Cleavage Under Targets and Tagmentation (CUT&Tag) for mapping native G4 in mammalian cell lines at high resolution and low background. Mild native conditions used for the procedure retain more G4 structures and provide a higher signal-to-noise ratio than ChIP-based methods. We determine the G4 landscape of mouse embryonic stem cells (ESC), observing widespread G4 formation at active promoters, active and poised enhancers. We discover that the presence of G4 motifs and G4 structures distinguishes active and primed enhancers in mouse ESCs. Upon differentiation to neural progenitor cells (NPC), enhancer G4s are lost. Further, performing R-loop CUT&Tag, we demonstrate the genome-wide co-occurrence of single-stranded DNA, G4s and R loops at promoters and enhancers. We confirm that G4 structures exist independent of ongoing transcription, suggesting an intricate relationship between transcription and non-canonical DNA structures.
Collapse
Affiliation(s)
- Jing Lyu
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 23, 17165 Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Rui Shao
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 23, 17165 Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Philip Yuk Kwong Yung
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 23, 17165 Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Tomtebodavägen 23, 17165 Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| |
Collapse
|
8
|
Cadoni E, Magalhães PR, Emídio RM, Mendes E, Vítor J, Carvalho J, Cruz C, Victor BL, Paulo A. New (Iso)quinolinyl-pyridine-2,6-dicarboxamide G-Quadruplex Stabilizers. A Structure-Activity Relationship Study. Pharmaceuticals (Basel) 2021; 14:ph14070669. [PMID: 34358095 PMCID: PMC8308870 DOI: 10.3390/ph14070669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
G-quadruplex (G4)-interactive small molecules have a wide range of potential applications, not only as drugs, but also as sensors of quadruplex structures. The purpose of this work is the synthesis of analogues of the bis-methylquinolinium-pyridine-2,6-dicarboxamide G4 ligand 360A, to identify relevant structure-activity relationships to apply to the design of other G4-interactive small molecules bearing bis-quinoline or bis-isoquinoline moieties. Thermal denaturation experiments revealed that non-methylated derivatives with a relative 1,4 position between the amide linker and the nitrogen of the quinoline ring are moderate G4 stabilizers, with a preference for the hybrid h-Telo G4, a 21-nt sequence present in human telomeres. Insertion of a positive charge upon methylation of quinoline/isoquinoline nitrogen increases compounds' ability to selectively stabilize G4s compared to duplex DNA, with a preference for parallel structures. Among these, compounds having a relative 1,3-position between the charged methylquinolinium/isoquinolinium nitrogen and the amide linker are the best G4 stabilizers. More interestingly, these ligands showed different capacities to selectively block DNA polymerization in a PCR-stop assay and to induce G4 conformation switches of hybrid h-Telo G4. Molecular dynamic simulations with the parallel G4 formed by a 21-nt sequence present in k-RAS gene promoter, showed that the relative spatial orientation of the two methylated quinoline/isoquinoline rings determines the ligands mode and strength of binding to G4s.
Collapse
Affiliation(s)
- Enrico Cadoni
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (E.C.); (E.M.)
| | - Pedro R. Magalhães
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal; (P.R.M.); (R.M.E.); (B.L.V.)
| | - Rita M. Emídio
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal; (P.R.M.); (R.M.E.); (B.L.V.)
| | - Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (E.C.); (E.M.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge Vítor
- Department of Pharmacy, Pharmacology and Health Technologies, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Bruno L. Victor
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal; (P.R.M.); (R.M.E.); (B.L.V.)
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (E.C.); (E.M.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
9
|
Pandith A, Nagarajachari U, Siddappa RKG, Lee S, Park CJ, Sannathammegowda K, Seo YJ. Loop-mediated fluorescent probes for selective discrimination of parallel and antiparallel G-Quadruplexes. Bioorg Med Chem 2021; 35:116077. [PMID: 33631656 DOI: 10.1016/j.bmc.2021.116077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Herein we report simple pyridinium (1-3) and quinolinium (4) salts for the selective recognition of G-quadruplexes (G4s). Among them, the probe 1, interestingly, selectively discriminated parallel (c-KIT-1, c-KIT-2, c-MYC) G4s from anti-parallel/hybrid (22AG, HRAS-1, BOM-17, TBA) G4s at pH 7.2, through a switch on response in the far-red window. Significant changes in the absorption (broad 575 nm → sharp 505 nm) and emission of probe 1 at 620 nm, attributed to selective interaction with parallel G4s, resulted in complete disaggregation-induced monomer emission. Symmetrical push/pull molecular confinements across the styryl units in probe 1 enhanced the intramolecular charge transfer (ICT) by restricting the free rotation of CC units in the presence of sterically less hindered and highly accessible G4 surface/bottom tetrads in the parallel G4s, which is relatively lower extent in antiparallel/hybrid G4s. We confirm that the disaggregation of probe 1 was very effective in the presence of parallel G4-forming ODNs, due to the presence of highly available free surface area, resulting in additional π-stacking interactions. The selective sensing capabilities of probe 1 were analyzed using UV-Vis spectroscopy, fluorescence spectroscopy, molecular dynamics (MD)-based simulation studies, and 1H NMR spectroscopy. This study should afford insights for the future design of selective compounds targeting parallel G4s.
Collapse
Affiliation(s)
- Anup Pandith
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | | | | | - Sungjin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | | | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
10
|
Summart R, Thaichana P, Supan J, Meepowpan P, Lee TR, Tuntiwechapikul W. Superiority of an Asymmetric Perylene Diimide in Terms of Hydrosolubility, G-Quadruplex Binding, Cellular Uptake, and Telomerase Inhibition in Prostate Cancer Cells. ACS OMEGA 2020; 5:29733-29745. [PMID: 33251409 PMCID: PMC7689663 DOI: 10.1021/acsomega.0c03505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/05/2020] [Indexed: 05/11/2023]
Abstract
Perylene diimide (PDI) derivatives have been studied as G-quadruplex ligands that suppress telomerase activity by facilitating G-quadruplex formation of telomeric DNA and the hTERT promoter. PIPER, the prototypical PDI, reduces telomerase activity in lung and prostate cancer cells, leading to telomere shortening and cellular senescence of these cells. However, PIPER suffers from poor hydrosolubility and the propensity to aggregate at neutral pH. In this report, we synthesized a new asymmetric PDI, aPDI-PHis, which maintains one N-ethyl piperidine side chain of PIPER and has histidine as another side chain. The results show that aPDI-PHis is superior to its symmetric counterparts, PIPER and PDI-His, in terms of hydrosolubility, G-quadruplex binding, cellular uptake, and telomerase inhibition in prostate cancer cells. These results suggest that one N-ethyl piperidine side chain of PDI is sufficient for G-quadruplex binding, while another side chain can be tuned to elicit desirable properties. These findings might lead to better PDIs for use as anticancer drugs.
Collapse
Affiliation(s)
- Ratasark Summart
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Pak Thaichana
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Jutharat Supan
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
| | - T. Randall Lee
- Department
of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States
| | - Wirote Tuntiwechapikul
- Department
of Biochemistry, Faculty of Medicine, Chiang
Mai University, 110 Intavaroros Road, Chiang Mai 50200, Thailand
- . Tel: +66-53-945323.
Fax: +66-53-894031
| |
Collapse
|
11
|
Chen B, Fountain G, Sullivan HJ, Paradis N, Wu C. To probe the binding pathway of a selective compound (D089-0563) to c-MYC Pu24 G-quadruplex using free ligand binding simulations and Markov state model analysis. Phys Chem Chem Phys 2020; 22:22567-22583. [DOI: 10.1039/d0cp03863f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
D089-0563 is a highly promising anti-cancer compound that selectively binds the transcription-silencing G-quadruplex element (Pu27) at the promoter region of the human c-MYC oncogene; however, its binding mechanism remains elusive.
Collapse
Affiliation(s)
- Brian Chen
- Rowan University
- College of Science and Mathematics
- Glassboro
- USA
| | | | | | | | - Chun Wu
- Rowan University
- College of Science and Mathematics
- Glassboro
- USA
| |
Collapse
|
12
|
Moghaddam KG, de Vries AH, Marrink SJ, Faraji S. Binding of quinazolinones to c-KIT G-quadruplex; an interplay between hydrogen bonding and π-π stacking. Biophys Chem 2019; 253:106220. [PMID: 31302375 DOI: 10.1016/j.bpc.2019.106220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022]
Abstract
Stabilization of G-quadruplex structures in the c-KIT promoter with the aid of ligands has become an area of great interest in potential cancer therapeutics. Understanding the binding process between ligands and G-quadruplex is essential for a discovery of selective ligands with high binding affinity to G-quadruplex. In the present work, binding mechanisms of 4-quinazolinones to c-KIT G-quadruplex were investigated theoretically by means of molecular dynamics (MD) simulations. To explore the binding affinity of ligands, binding free energy calculations were performed using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. We demonstrate that the key interactions in G-quadruplex-ligand complexes are π-π stacking and hydrogen bond interactions. However, neither of these two interactions alone determines the stability of the G-quadruplex-ligand complexes; rather, it is the result of an intricate interplay between the two. To further examine the nature of the binding, a free energy decomposition analysis at residue level was carried out. The results clearly demonstrate the crucial roles of two hot spot residues (DG4 and DG8) for the binding of ligands to c-KIT G-quadruplex, and highlight the importance of the planar aromatic moiety of ligands in G-quadruplex stabilization via π-π stacking interactions. Our study can assist in the design of new derivatives of 4-quinazolinone with high binding affinity for c-KIT G-quadruplex.
Collapse
Affiliation(s)
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Jäger S, Gude L, Arias-Pérez MS. 4,5-Diazafluorene N-glycopyranosyl hydrazones as scaffolds for potential bioactive metallo-organic compounds: Synthesis, structural study and cytotoxic activity. Bioorg Chem 2018; 81:405-413. [PMID: 30205247 DOI: 10.1016/j.bioorg.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 02/05/2023]
Abstract
A series of novel N1-(4,5-diazafluoren-9-yliden)-N2-glycopyranosyl hydrazines was prepared in synthetically useful yields by treatment of 9H-4,5-diazafluoren-9-hydrazone with different unprotected monosaccharides. The reactions with the monosaccharides tested afforded stereoselectively, and exclusively, cyclic derivatives, whose structures correspond to N-β-glycopyranosyl hydrazones except for the d-arabinose derivative that agrees with the α-anomer. Several copper(II) complexes having a 2:1 ligand to metal mole ratio were also prepared. The metal complexes can bind DNA sequences and preferentially stabilize G-quadruplex DNA structures over dsDNA. The fucose, rhamnose and deoxyglucose copper(II) complexes exhibited a cytotoxic activity against cultured HeLa and PC3 tumor cells comparable to other metal complexes normally used for chemotherapeutic purposes, such as cisplatin.
Collapse
Affiliation(s)
- Sebastian Jäger
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain
| | - Lourdes Gude
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain
| | - María-Selma Arias-Pérez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805-Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
14
|
Flusberg DA, Rizvi NF, Kutilek V, Andrews C, Saradjian P, Chamberlin C, Curran P, Swalm B, Kattar S, Smith GF, Dandliker P, Nickbarg EB, O'Neil J. Identification of G-Quadruplex-Binding Inhibitors of Myc Expression through Affinity Selection-Mass Spectrometry. SLAS DISCOVERY 2018; 24:142-157. [PMID: 30204533 DOI: 10.1177/2472555218796656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Myc oncogene is overexpressed in many cancers, yet targeting it for cancer therapy has remained elusive. One strategy for inhibition of Myc expression is through stabilization of the G-quadruplex (G4), a G-rich DNA secondary structure found within the Myc promoter; stabilization of G4s has been shown to halt transcription of downstream gene products. Here we used the Automated Ligand Identification System (ALIS), an affinity selection-mass spectrometry method, to identify compounds that bind to the Myc G4 out of a pool of compounds that had previously been shown to inhibit Myc expression in a reporter screen. Using an ALIS-based screen, we identified hits that bound to the Myc G4, a small subset of which bound preferentially relative to G4s from the promoters of five other genes. To determine functionality and specificity of the Myc G4-binding compounds in cell-based assays, we compared inhibition of Myc expression in cells with and without Myc G4 regulation. Several compounds inhibited Myc expression only in the Myc G4-containing line, and one compound was verified to function through Myc G4 binding. Our study demonstrates that ALIS can be used to identify selective nucleic acid-binding compounds from phenotypic screen hits, increasing the pool of drug targets beyond proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sam Kattar
- 3 Chemistry, Merck & Co., Inc., Boston, MA, USA
| | | | | | | | | |
Collapse
|