1
|
Naumchyk V, Andriashvili VA, Radchenko DS, Dudenko D, Moroz YS, Tolmachev AA, Zhersh S, Grygorenko OO. S NAr or Sulfonylation? Chemoselective Amination of Halo(het)arene Sulfonyl Halides for Synthetic Applications and Ultralarge Compound Library Design. J Org Chem 2024; 89:3161-3183. [PMID: 38383160 DOI: 10.1021/acs.joc.3c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The chemoselectivity of halo(het)arene sulfonyl halide aminations is studied thoroughly under parallel synthesis conditions, and the scope and limitations of the method are established. It is shown that SNAr-reactive sulfonyl halides typically undergo sulfonamide synthesis during the first step; the second amination is also possible provided that the SNAr-active center is sufficiently reactive. On the contrary, sulfonyl fluorides bearing an arylating moiety undergo selective transformation at the latter reactive center under proper control. Further sulfur-fluoride exchange (SuFEx) is also possible, which can be especially valuable for some sulfonyl halide classes. The developed two-step parallel double amination protocol provides access to a 6.67-billion compound synthetically tractable REAL-type chemical space (76% expected synthesis success rate).
Collapse
Affiliation(s)
- Vasyl Naumchyk
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | | | - Dmytro Dudenko
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
| | - Yurii S Moroz
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
- Chemspace, Winston Churchill Street 85, Kyïv 02094, Ukraine
| | - Andrey A Tolmachev
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Serhii Zhersh
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| |
Collapse
|
2
|
Bueno B, Heurtaux S, Gagnon A. Synthesis of 1-Methylcyclopropyl Aryl Ethers from Phenols Using an Alkenylation-Cyclopropanation Sequence. J Org Chem 2023; 88:13351-13357. [PMID: 37616498 DOI: 10.1021/acs.joc.3c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
1-Methylcyclopropyl aryl ethers (McPAEs) can be viewed as cyclized derivatives of their O-tert-butyl counterparts. Although these compounds can find use in medicinal chemistry, they are much less represented in the literature than their aryl cyclopropyl ether analogues. McPAEs are generally prepared via an SNAr reaction using 1-methylcyclopropanol. However, this method works exclusively with highly deactivated arenes. We report herein a two-step sequence to access McPAEs consisting of the 1-methylvinylation of phenols followed by cyclopropanation of the corresponding 1-methylvinyl aryl ethers. Isomeric mono- and dimethyl analogues were also prepared using this sequence.
Collapse
Affiliation(s)
- Bianca Bueno
- Université du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Suzanne Heurtaux
- Université du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Alexandre Gagnon
- Université du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
3
|
CycA-Dependent Glycine Assimilation Is Connected to Novobiocin Susceptibility in Escherichia coli. Microbiol Spectr 2022; 10:e0250122. [PMID: 36377953 PMCID: PMC9769978 DOI: 10.1128/spectrum.02501-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli serine hydroxymethyltransferase (GlyA) converts serine to glycine, and glyA mutants are auxotrophic for glycine. CycA is a transporter that mediates glycine uptake. Deleting glyA in E. coli strain W3110 led to activation of CysB, which was related to novobiocin (NOV) susceptibility. Moreover, deleting glyA resulted in increased sensitivity to NOV, and this could be reversed by high concentrations of glycine. Reverse mutants of ΔglyA were selected and one of them had a mutation in yrdC, the gene encoding threonylcarbamoyl-AMP synthase. Subsequent proteome analysis showed that deleting glyA led to increased expression of TcyP and TdcB, making this bacterium dependent on CycA for glycine assimilation. Furthermore, deleting cycA in a ΔglyA background caused a severe growth defect on Luria-Bertani medium, which could be complemented by high concentrations of exogenous glycine. Mutation of yrdC led to decreased expression of TdcB but increased expression of ThrA/B/C and LtaE, which favored the conversion of threonine to glycine and thus avoided the dependence on CycA. Correspondingly, deleting of tcyP, tdcB, or gshA could reverse the NOV-sensitive phenotype of ΔglyA mutants. Overexpression of cycA resulted in increased sensitivity to NOV, whereas deleting this gene caused NOV resistance. Moreover, overexpression of cycA led to increased accumulation of NOV upon drug treatment. Therefore, inactivation of glyA in E. coli led to CycA-dependent glycine assimilation, which enhanced the accumulation of NOV and then made the bacterium more sensitive to this drug. These findings broaden our understanding of glycine metabolism and mechanisms of NOV susceptibility. IMPORTANCE Novobiocin (NOV) has been used in clinical practice as an ATPase inhibitor for decades. However, because it has been withdrawn from the market, pharmaceutical companies are searching for other ATPase inhibitors. Thus, probing the mechanisms of susceptibility to NOV will be beneficial to those efforts. In this study, we showed that inactivation of glyA in E. coli led to CycA-dependent glycine assimilation, which accompanied the accumulation of NOV and thereby increased the sensitivity to this drug. To date, this is the first report demonstrating the linkage between glycine assimilation and NOV susceptibility, and it is also the first report showing that YrdC is able to modulate the metabolic flux of threonine.
Collapse
|
4
|
Pudipeddi A, Vasudevan S, Shanmugam K, Mohan S S, Vairaprakash P, Neelakantan P, Balraj AS, Solomon AP. Design, dynamic docking, synthesis, and in vitro validation of a novel DNA gyrase B inhibitor. J Biomol Struct Dyn 2022:1-14. [PMID: 35924774 DOI: 10.1080/07391102.2022.2107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-intermediate-resistant Staphylococcus aureus (VRSA) are among the WHO's high priority pathogens. Among these two, MRSA is the most globally documented pathogen that necessitates the pressing demand for new classes of anti-MRSA drugs. Bacterial gyrase targeted therapeutics are unique strategies to overcome cross-resistance as they are present only in bacteria and absent in higher eukaryotes. The GyrB subunit is essential for the catalytic functions of the bacterial enzyme DNA Gyrase, thereby constituting a promising druggable target. The current study performed a structure-based virtual screening to designing GyrB target-specific candidate molecules. The de novo ligand design of novel hit molecules was performed using a rhodanine scaffold. Through a systematic in silico screening process, the hit molecules were screened for their synthetic accessibility, drug-likeness and pharmacokinetics properties in addition to its target specific interactions. Of the 374 hit molecules obtained through de novo ligand design, qsl-304 emerged as the most promising ligand. The molecular dynamic simulation studies confirmed the stable interaction between the key residues and qsl-304. qsl-304 was synthesized through a one-step chemical synthesis procedure, and the in vitro activity was proven, with an IC50 of 31.23 µg/mL against the novobiocin resistant clinical isolate, Staphylococcus aureus sa-P2003. Further studies on time-kill kinetics showed the bacteriostatic nature with the diminished recurrence of resistance. The on-target gyrB inhibition further proved the efficacy of qsl-304.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhila Pudipeddi
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Suma Mohan S
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Alex Stanley Balraj
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Prasannan D, Sareena C, Arunkumar C, Vasu ST. Synthesis, structure, photophysical, electrochemical properties and antibacterial activity of brominated BODIPYs as an inhibitor of DNA gyrase B of S. aureus. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BODIPYs with 3-thienyl and 4-acetamido phenyl groups substituted at the meso-position are subjected to regioselective bromination using three equivalents of [Formula: see text]-bromosuccinimide (NBS) to yield their 2-mono and 2,6-di bromoderivatives. Their photophysical, electrochemical and antimicrobial properties are investigated. This paper presents a mechanistic investigation of the antibacterial effect of brominated BODIPYs, particularly against Staphylococcus aureus. Fluorescence microscopic images reveal that the compounds are internalized effectively within the bacterial cells, making it an ideal antibacterial drug. Morphological analysis of the bacterial cells after the treatment with the test compounds showed that the compounds did not affect the cell membrane or cell wall and the antibacterial effect of these compounds is achieved via a different mechanism. The most effective compound was selected to explore the target of action. Molecular docking studies were performed on 22 selected proteins in S. aureus and the in silico results were validated by in vitro experiments. It was observed that the supercoiling activity of DNA gyrase was completely inhibited by the 2,6-dibromo-1,3,5,7-tetramethyl-8-(4-acetamido)-4-bora-3a,4a-diaza-[Formula: see text]-indacene, 3c by forming H-bonds with the ASP 81 residue of the enzyme.
Collapse
Affiliation(s)
- Dijo Prasannan
- Bioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, NIT Campus, P.O., Calicut, India-673 601, India
| | - Chennakkandathil Sareena
- School of Biotechnology, National Institute of Technology Calicut, NIT Campus, P.O., Calicut, India-673 601, India
| | - Chellaiah Arunkumar
- Bioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, NIT Campus, P.O., Calicut, India-673 601, India
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, NIT Campus, P.O., Calicut, India-673 601, India
| |
Collapse
|