1
|
Singh A, Singh K, Kaur J, Kaur R, Sharma A, Kaur J, Kaur U, Chadha R, Bedi PMS. Pathogenesis of Alzheimer's Disease and Diversity of 1,2,3-Triazole Scaffold in Drug Development: Design Strategies, Structural Insights, and Therapeutic Potential. ACS Chem Neurosci 2023; 14:3291-3317. [PMID: 37683129 DOI: 10.1021/acschemneuro.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease is a most prevalent form of dementia all around the globe and currently poses a significant challenge to the healthcare system. Currently available drugs only slow the progression of this disease rather than provide proper containment. Identification of multiple targets responsible for this disease in the last three decades established it as a multifactorial neurodegenerative disorder that needs novel multifunctional agents for its management and the possible reason for the failure of currently available single target clinical drugs. 1,2,3-Triazole is a miraculous nucleus in medicinal chemistry and the first choice for development of multifunctional hybrid molecules. Apart from that, it is an integral component of various drugs in clinical trials as well as in clinical practice. This review is focused on the pathogenesis of Alzheimer's disease and 1,2,3-triazole containing derivatives developed in recent decades as potential anti-Alzheimer's agents. The review will provide (A) precise insight of various established targets of Alzheimer's disease including cholinergic, amyloid, tau, monoamine oxidases, glutamate, calcium, and reactive oxygen species hypothesis and (B) design hypothesis, structure-activity relationships, and pharmacological outcomes of 1,2,3-triazole containing multifunctional anti-Alzheimer's agents. This review will provide a baseline for various research groups working on Alzheimer's drug development in designing potent, safer, and effective multifunctional anti-Alzheimer's candidates of the future.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jashandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jasleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Uttam Kaur
- University School of Business, Chandigarh University, Mohali, Punjab 140413, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
2
|
Nguyen HD. In silico identification of novel heterocyclic compounds combats Alzheimer's disease through inhibition of butyrylcholinesterase enzymatic activity. J Biomol Struct Dyn 2023; 42:10890-10910. [PMID: 37723904 DOI: 10.1080/07391102.2023.2259482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Increasing evidence indicates that heterocyclic molecules possess properties against butyrylcholinesterase (BChE) enzymatic activity, which is a potential therapeutic target for Alzheimer's disease (AD). Thus, this study aimed to further evaluate the relationship between heterocyclic molecules and their biological activities. A dataset of 38 selective and potent heterocyclic compounds (-log[the half‑maximal inhibitory concentration (pIC50)]) values ranging from 8.02 to 10.05) was applied to construct a quantitative structure-activity relationship (QSAR) study, including Bayesian model average (BMA), artificial neural network (ANN), multiple nonlinear regression (MNLR), and multiple linear regression (MLR) models. Four models met statistical acceptance in internal and external validation. The ANN model was superior to other models in predicting the pIC50 of the outcome. The descriptors put into the models were found to be comparable with the target-ligand complex X-ray structures, making these models interpretable. Three selected molecules possess drug-like properties (pIC50 values ranged from 9.19 to 9.54). The docking score between candidates and the BChE receptor (RCSB ID 6EYF) ranged from -8.4 to -9.0 kcal/mol. Remarkably, the pharmacokinetics, biological activities, molecular dynamics, and physicochemical properties of compound 18 (C20H22N4O, pIC50 value = 9.33, oxadiazole derivative group) support its protective effects on AD treatment due to its non-toxic nature, non-carcinogen, cholinergic nature, capability to penetrate the blood-brain barrier, and high gastrointestinal absorption.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
3
|
Suwanhom P, Nualnoi T, Khongkow P, Tipmanee V, Lomlim L. Novel Lawsone-Quinoxaline Hybrids as New Dual Binding Site Acetylcholinesterase Inhibitors. ACS OMEGA 2023; 8:32498-32511. [PMID: 37720764 PMCID: PMC10500570 DOI: 10.1021/acsomega.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
A new family of lawsone-quinoxaline hybrids was designed, synthesized, and evaluated as dual binding site cholinesterase inhibitors (ChEIs). In vitro tests revealed that compound 6d was the most potent AChEI (IC50 = 20 nM) and BChEI (IC50 = 220 nM). The compound 6d did not show cytotoxicity against the SH-SY5Y neuronal cells (GI50 > 100 μM). In silico and enzyme kinetic experiments demonstrated that compound 6d bound to both the catalytic anionic site and the peripheral anionic site of HuAChE. The lawsone-quinoxaline hybrids exhibited potential for further development of potent acetylcholinesterase inhibitors for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Paptawan Suwanhom
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Phytomedicine
and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty
of Pharmaceutical Sciences, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapat Nualnoi
- Department
of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Varomyalin Tipmanee
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Luelak Lomlim
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Phytomedicine
and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty
of Pharmaceutical Sciences, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
5
|
Liu T, Su K, Cai W, Ao H, Li M. Therapeutic potential of puerarin against cerebral diseases: From bench to bedside. Eur J Pharmacol 2023:175695. [PMID: 36977450 DOI: 10.1016/j.ejphar.2023.175695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
The incidence of cerebral diseases is rapidly increasing worldwide, and they have become an important challenge for modern medicine. Most of the available chemical drugs used in the treatment of cerebral diseases are highly toxic and single-targeted. Therefore, novel drugs from natural resources have attracted much attention for their potential to manage cerebral diseases. Puerarin is a natural isoflavone isolated from the roots of Pueraria species such as P. lobata (Willd) Ohwi, P. thomsonii, and P. mirifica. Several authors have reported the beneficial effects of puerarin in cerebral ischemic disease, intracerebral hemorrhage, vascular dementia, Alzheimer's disease, Parkinson's disease, depression, anxiety, and traumatic brain injury. This review summarizes the brain pharmacokinetics, brain drug delivery system, clinical use (in cerebral diseases), toxicity, and the adverse clinical reactions of puerarin. We have systematically presented the pharmacological actions and the molecular mechanisms of puerarin in various cerebral diseases to provide a direction for future research on the therapeutic use of puerarin in cerebral diseases.
Collapse
|
6
|
Khan SA, Akhtar MJ, Gogoi U, Meenakshi DU, Das A. An Overview of 1,2,3-triazole-Containing Hybrids and Their Potential Anticholinesterase Activities. Pharmaceuticals (Basel) 2023; 16:179. [PMID: 37259329 PMCID: PMC9961747 DOI: 10.3390/ph16020179] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 07/30/2023] Open
Abstract
Acetylcholine (ACh) neurotransmitter of the cholinergic system in the brain is involved in learning, memory, stress responses, and cognitive functioning. It is hydrolyzed into choline and acetic acid by two key cholinesterase enzymes, viz., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A loss or degeneration of cholinergic neurons that leads to a reduction in ACh levels is considered a significant contributing factor in the development of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD). Numerous studies have shown that cholinesterase inhibitors can raise the level of ACh and, therefore, enhance people's quality of life, and, at the very least, it can temporarily lessen the symptoms of NDs. 1,2,3-triazole, a five-membered heterocyclic ring, is a privileged moiety, that is, a central scaffold, and is capable of interacting with a variety of receptors and enzymes to exhibit a broad range of important biological activities. Recently, it has been clubbed with other pharmacophoric fragments/molecules in hope of obtaining potent and selective AChE and/or BuChE inhibitors. The present updated review succinctly summarizes the different synthetic strategies used to synthesize the 1,2,3-triazole moiety. It also highlights the anticholinesterase potential of various 1,2,3-triazole di/trihybrids reported in the past seven years (2015-2022), including a rationale for hybridization and with an emphasis on their structural features for the development and optimization of cholinesterase inhibitors to treat NDs.
Collapse
Affiliation(s)
- Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat 130, Oman
| | | | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| | | | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| |
Collapse
|
7
|
4-(4-(((1H-Benzo[d][1,2,3]triazol-1-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)-7-chloroquinoline. MOLBANK 2022. [DOI: 10.3390/m1404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 1,2,3-triazole ring system can be easily obtained by widely used copper-catalyzed click reaction of azides with alkynes. 1,2,3-triazole exhibits myriad of biological activities, including antibacterial antimalarial, and antiviral activities. We herein reported the synthesis of quinoline-based [1,2,3]-triazole hybrid derivative via Cu(I)-catalyzed click reaction of 4-azido-7-chloroquinoline with alkyne derivative of hydroxybenzotriazole (HOBt). The compound was fully characterized by proton nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR), correlated spectroscopy (1H-1H-COSY), heteronuclear single quantum coherence (HSQC) and distortionless enhancement by polarization transfer (DEPT-135 and DEPT-90) NMR, ultraviolet (UV) and Fourier-transform infrared (FTIR) spectroscopies, and high-resolution mass spectrometry (HRMS). Computational studies were enrolled to predict the interaction of the synthesized compound with acetylcholinesterase, a target of primary relevance for developing new therapeutic options to counteract neurodegeneration. Moreover, the drug-likeness of the compound was also investigated by predicting its pharmacokinetic properties.
Collapse
|
8
|
Obaid RJ, Naeem N, Mughal EU, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv 2022; 12:19764-19855. [PMID: 35919585 PMCID: PMC9275557 DOI: 10.1039/d2ra03081k] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.
Collapse
Affiliation(s)
- Rami J Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
9
|
Przybyłowska M, Dzierzbicka K, Kowalski S, Demkowicz S, Daśko M, Inkielewicz-Stepniak I. Design, synthesis and biological evaluation of novel N-phosphorylated and O-phosphorylated tacrine derivatives as potential drugs against Alzheimer's disease. J Enzyme Inhib Med Chem 2022; 37:1012-1022. [PMID: 35361039 PMCID: PMC8979514 DOI: 10.1080/14756366.2022.2045591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this work, we designed, synthesised and biologically investigated a novel series of 14 N- and O-phosphorylated tacrine derivatives as potential anti-Alzheimer’s disease agents. In the reaction of 9-chlorotacrine and corresponding diamines/aminoalkylalcohol we obtained diamino and aminoalkylhydroxy tacrine derivatives. Next, the compounds were acid to give final products 6–13 and 16–21 that were characterised by 1H, 13 C, 31 P NMR and MS. The results of the docking studies revealed that the designed phosphorus hybrids, in theory can bind to AChE and BChE. All compounds exhibited significantly lower AutoDock Vina scores compared to tacrine. The inhibitory potency evaluation was performed using the Ellman’s method. The most inhibitory activity against AChE exhibited compound 8 with an IC50 value of 6.11 nM and against BChE 13 with an IC50 value of 1.97 nM and they were 6- and 12-fold potent than tacrine. Compound 19 showed the lack of hepatocytotoxicity in MTT assay.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Szymon Kowalski
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Synthesis, photochemistry and computational study of novel 1,2,3-triazole heterostilbenes: Expressed biological activity of their electrocyclization photoproducts. Bioorg Chem 2022; 121:105701. [DOI: 10.1016/j.bioorg.2022.105701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 01/16/2023]
|
11
|
Prasanna CAL, Sharma A. Pharmacological exploration of triazole based therapeutics for Alzheimer disease: An overview. Curr Drug Targets 2022; 23:933-953. [DOI: 10.2174/1389450123666220328153741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Alzheimer`s disease (AD) is an irreversible progressive neurodegenerative disorder which may account for approximately 60-70% cases of dementia worldwide. AD is characterized by impaired behavioural and cognitive functions including memory, language, conception, attentiveness, judgment, and reasoning problems. The two important hallmarks of AD are the appearance of plaques and tangles of amyloid beta (Aβ) and tau proteins, respectively, in the brain based on the etiology of the disease including cholinergic impairment, metal dyshomeostasis, oxidative stress, and degradation of neurotransmitters. Currently, the used medication only provides alleviation of symptoms but not effective in curing the disease that is creating by an urge to develop new molecules to treat AD. Heterocyclic compounds have proven their ability to be developed as drugs for the treatment of various diseases. The five-membered heterocyclic compound triazole has received foremost fascination for the discovery of new drugs due to the possibility of structural variation and proved its significance in various drug categories. Therefore, this review summarizes mainly the recent advancements in the development of novel 1,2,3-triazole and 1,2,4-triazole based molecules in the drug discovery process for targeting various AD targets such as phosphodiesterase 1 (PDE1) Inhibitors, Apoptosis signal-regulating kinase 1 (ASK1) inhibitors, Somatostatin receptor subtype-4 (SSTR4) agonist, many other druggable targets, molecular modelling studies as well as various methodology for the synthesis of triazoles containing molecules such as Click reaction, Pellizzari and Einhorn-Brunner Reaction.
Collapse
Affiliation(s)
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
12
|
Ünlü A, Teralı K, Uğurlu Aydın Z, Dönmez AA, Yusufoğlu HS, Çalış İ. Isolation, Characterization and In Silico Studies of Secondary Metabolites from the Whole Plant of Polygala inexpectata Peşmen & Erik. Molecules 2022; 27:684. [PMID: 35163950 PMCID: PMC8838668 DOI: 10.3390/molecules27030684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Polygala species are frequently used worldwide in the treatment of various diseases, such as inflammatory and autoimmune disorders as well as metabolic and neurodegenerative diseases, due to the large number of secondary metabolites they contain. The present study was performed on Polygala inexpectata, which is a narrow endemic species for the flora of Turkey, and resulted in the isolation of nine known compounds, 6,3'-disinapoyl-sucrose (1), 6-O-sinapoyl,3'-O-trimethoxy-cinnamoyl-sucrose (tenuifoliside C) (2), 3'-O-(O-methyl-feruloyl)-sucrose (3), 3'-O-(sinapoyl)-sucrose (4), 3'-O-trimethoxy-cinnamoyl-sucrose (glomeratose) (5), 3'-O-feruloyl-sucrose (sibiricose A5) (6), sinapyl alcohol 4-O-glucoside (syringin or eleutheroside B) (7), liriodendrin (8), and 7,4'-di-O-methylquercetin-3-O-β-rutinoside (ombuin 3-O-rutinoside or ombuoside) (9). The structures of the compounds were determined by the spectroscopic methods including 1D-NMR (1H NMR, 13C NMR, DEPT-135), 2D-NMR (COSY, NOESY, HSQC, HMBC), and HRMS. The isolated compounds were shown in an in silico setting to be accommodated well within the inhibitor-binding pockets of myeloperoxidase and inducible nitric oxide synthase and anchored mainly through hydrogen-bonding interactions and π-effects. It is therefore plausible to suggest that the previously established anti-inflammatory properties of some Polygala-derived phytochemicals may be due, in part, to the modulation of pro-inflammatory enzyme activities.
Collapse
Affiliation(s)
- Ayşe Ünlü
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (Z.U.A.); (A.A.D.)
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Kyrenia 99428, Cyprus;
| | - Zübeyde Uğurlu Aydın
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (Z.U.A.); (A.A.D.)
| | - Ali A. Dönmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (Z.U.A.); (A.A.D.)
| | - Hasan Soliman Yusufoğlu
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| | - İhsan Çalış
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus;
| |
Collapse
|
13
|
Tamilthendral V, Ramesh R, Malecki JG. New ruthenium( ii) catalysts enable the synthesis of 2-amino-4 H-chromenes using primary alcohols via acceptorless dehydrogenative coupling. NEW J CHEM 2022. [DOI: 10.1039/d2nj03268f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Direct access to a diverse range of 2-amino-4H-chromenes was established in excellent yields through a one-pot multicomponent ADC reaction of benzyl alcohols catalysed by p-cymene Ru(ii) complexes under additive/promotor-free conditions.
Collapse
Affiliation(s)
- Veerappan Tamilthendral
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| |
Collapse
|
14
|
Kaur Gulati H, Choudhary S, Kumar N, Ahmed A, Bhagat K, Vir Singh J, Singh A, Kumar A, Singh Bedi PM, Singh H, Mukherjee D. Design, Synthesis, biological investigations and molecular interactions of triazole linked tacrine glycoconjugates as Acetylcholinesterase inhibitors with reduced hepatotoxicity. Bioorg Chem 2021; 118:105479. [PMID: 34801945 DOI: 10.1016/j.bioorg.2021.105479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/11/2021] [Accepted: 11/07/2021] [Indexed: 01/21/2023]
Abstract
Tacrine is a known Acetylcholinesterase (AChE) inhibitors having hepatotoxicity as main liability associated with it. The present study aims to reduce its hepatotoxicity by synthesizing tacrine linked triazole glycoconjugates via Huisgen's [3 + 2] cycloaddition of anomeric azides and terminal acetylenes derived from tacrine. A series of triazole based glycoconjugates containing both acetylated (A-1 to A-7) and free sugar hydroxyl groups (A-8 to A-14) at the amino position of tacrine were synthesized in good yield taking aid from molecular docking studies and evaluated for their in vitro AChE inhibition activity as well as hepatotoxicity. All the hybrids were found to be non-toxic on HePG2 cell line at 200 μM (100 % cell viability) as compared to tacrine (35 % cell viability) after 24 h of incubation period. Enzyme kinetic studies carried out for one of the potent hybrids in the series A-1 (IC50 0.4 μM) revealed its mixed inhibition approach. Thus, compound A-1 can be used as principle template to further explore the mechanism of action of different targets involved in Alzheimer's disease (AD) which stands as an adequate chemical probe to be launched in an AD drug discovery program.
Collapse
Affiliation(s)
- Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Sushil Choudhary
- PK-PD Toxicology Division, CSIR-IIIM, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR-IIIM), Jammu 180001, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India; Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ajaz Ahmed
- Natural Product Chemistry Division, CSIR-IIIM, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR-IIIM), Jammu 180001, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Ajay Kumar
- PK-PD Toxicology Division, CSIR-IIIM, Jammu 180001, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India; Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division, CSIR-IIIM, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR-IIIM), Jammu 180001, India.
| |
Collapse
|
15
|
Graciano IA, de Carvalho AS, de Carvalho da Silva F, Ferreira VF. 1,2,3-Triazole- and Quinoline-Based Hybrids with Potent Antiplasmodial Activity. Med Chem 2021; 18:521-535. [PMID: 34758718 DOI: 10.2174/1573406418666211110143041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities. OBJECTIVE This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei. METHOD We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity. RESULTS The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs. CONCLUSION Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.
Collapse
Affiliation(s)
- Isabela A Graciano
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Alcione S de Carvalho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Fernando de Carvalho da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Campus do Valonguinho, 24020-141 Niterói, RJ. Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, 24241-000, Niterói, RJ. Brazil
| |
Collapse
|
16
|
Cannon J, Tang S, Yang K, Harrison R, Choi SK. Dual acting oximes designed for therapeutic decontamination of reactive organophosphates via catalytic inactivation and acetylcholinesterase reactivation. RSC Med Chem 2021; 12:1592-1603. [PMID: 34671741 DOI: 10.1039/d1md00194a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 01/24/2023] Open
Abstract
A conventional approach in the therapeutic decontamination of reactive organophosphate (OP) relies on chemical OP degradation by oxime compounds. However, their efficacy is limited due to their lack of activity in the reactivation of acetylcholinesterase (AChE), the primary target of OP. Here, we describe a set of α-nucleophile oxime derivatives which are newly identified for such dual modes of action. Thus, we prepared a 9-member oxime library, each composed of an OP-reactive oxime core linked to an amine-terminated scaffold, which varied through an N-alkyl functionalization. This library was screened by enzyme assays performed with human and electric eel subtypes of OP-inactivated AChE, which led to identifying three oxime leads that displayed significant enhancements in reactivation activity comparable to 2-PAM. They were able to reactivate both enzymes inactivated by three OP types including paraoxon, chlorpyrifos and malaoxon, suggesting their broad spectrum of OP susceptibility. All compounds in the library were able to retain catalytic reactivity in paraoxon inactivation by rates increased up to 5 or 8-fold relative to diacetylmonoxime (DAM) under controlled conditions at pH (8.0, 10.5) and temperature (17, 37 °C). Finally, selected lead compounds displayed superb efficacy in paraoxon decontamination on porcine skin in vitro. In summary, we addressed an unmet need in therapeutic OP decontamination by designing and validating a series of congeneric oximes that display dual modes of action.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Kelly Yang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Racquel Harrison
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| |
Collapse
|
17
|
Gonnet L, Baron M, Baltas M. Synthesis of Biologically Relevant 1,2,3- and 1,3,4-Triazoles: From Classical Pathway to Green Chemistry. Molecules 2021; 26:5667. [PMID: 34577138 PMCID: PMC8464795 DOI: 10.3390/molecules26185667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Green Chemistry has become in the last two decades an increasing part of research interest. Nonconventional «green» sources for chemical reactions include micro-wave, mechanical mixing, visible light and ultrasound. 1,2,3-triazoles have important applications in pharmaceutical chemistry while their 1,2,4 counterparts are developed to a lesser extent. In the review presented here we will focus on synthesis of 1,2,3 and 1,2,4-triazole systems by means of classical and « green chemistry » conditions involving ultrasound chemistry and mechanochemistry. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties. Finally, we will also present the formal cycloreversion of 1,2,3-triazole compounds under mechanical forces and its potential use in biological systems.
Collapse
Affiliation(s)
- Lori Gonnet
- IMT Mines Albi, UMR CNRS 5302, Centre Rapsodee, Campus Jarlard, Allée des Sciences, Université de Toulouse, CEDEX 09, 81013 Albi, France; (L.G.); (M.B.)
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Michel Baron
- IMT Mines Albi, UMR CNRS 5302, Centre Rapsodee, Campus Jarlard, Allée des Sciences, Université de Toulouse, CEDEX 09, 81013 Albi, France; (L.G.); (M.B.)
| | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France
| |
Collapse
|
18
|
Zveaghintseva M, Stingaci E, Pogrebnoi S, Smetanscaia A, Valica V, Uncu L, Ch. Kravtsov V, Melnic E, Petrou A, Glamočlija J, Soković M, Carazo A, Mladěnka P, Poroikov V, Geronikaki A, Macaev FZ. Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation. Molecules 2021; 26:molecules26144304. [PMID: 34299579 PMCID: PMC8307147 DOI: 10.3390/molecules26144304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols (3a-3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and the evaluation of their antifungal activity. In silico prediction of biological activity with computer program PASS indicate that the compounds have a high novelty compared to the known antifungal agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed by 3n. Their MIC values for different fungi were 22.1-184.2 and 71.3-199.8 µM, respectively. Twelve from fourteen tested compounds were more active than the reference drugs ketoconazole and bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used to predict the mechanism of antifungal activities. According to the docking results, the inhibition of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We also showed that most active compounds have a low cytotoxicity, which allows us to consider them promising antifungal agents for the subsequent testing activity in in vivo assays.
Collapse
Affiliation(s)
- Marina Zveaghintseva
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Eugenia Stingaci
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Serghei Pogrebnoi
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Anastasia Smetanscaia
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Vladimir Valica
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Livia Uncu
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Victor Ch. Kravtsov
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Str. Academiei 5, MD-2028 Chișinău, Moldova; (V.C.K.); (E.M.)
| | - Elena Melnic
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Str. Academiei 5, MD-2028 Chișinău, Moldova; (V.C.K.); (E.M.)
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Jasmina Glamočlija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Beograd, Serbia; (J.G.); (M.S.)
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Beograd, Serbia; (J.G.); (M.S.)
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Vladimir Poroikov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Pogodinskaya Str. 10, Bldg. 8, 119121 Moscow, Russia;
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (A.G.); (F.Z.M.); Tel.: +30-2310-99-76-16 (A.G.)
| | - Fliur Z. Macaev
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
- Correspondence: (A.G.); (F.Z.M.); Tel.: +30-2310-99-76-16 (A.G.)
| |
Collapse
|
19
|
Bagri K, Kumar A, Manisha, Kumar P. Computational Studies on Acetylcholinesterase Inhibitors: From Biochemistry to Chemistry. Mini Rev Med Chem 2021; 20:1403-1435. [PMID: 31884928 DOI: 10.2174/1389557520666191224144346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
Acetylcholinesterase inhibitors are the most promising therapeutics for Alzheimer's disease treatment as these prevent the loss of acetylcholine and slows the progression of the disease. The drugs approved for the management of Alzheimer's disease by the FDA are acetylcholinesterase inhibitors but are associated with side effects. Consistent and stringent efforts by the researchers with the help of computational methods opened new ways of developing novel molecules with good acetylcholinesterase inhibitory activity. In this manuscript, we reviewed the studies that identified the essential structural features of acetylcholinesterase inhibitors at the molecular level as well as the techniques like molecular docking, molecular dynamics, quantitative structure-activity relationship, virtual screening, and pharmacophore modelling that were used in designing these inhibitors.
Collapse
Affiliation(s)
- Kiran Bagri
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Manisha
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
20
|
Discovery, biological evaluation and molecular dynamic simulations of butyrylcholinesterase inhibitors through structure-based pharmacophore virtual screening. Future Med Chem 2021; 13:769-784. [PMID: 33759552 DOI: 10.4155/fmc-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Butyrylcholinesterase (BChE) is a crucial therapeutic target because it is associated with multiple pathological elements of Alzheimer's disease (AD). An integrated computational strategy was employed to exploit effective BChE inhibitors. Methods & results: Ten compounds derived from the Enamine database by structure-based pharmacophore virtual screening were further evaluated for biological activity; out of the ten, only five had an IC50 of less than 100 μM. Among these five compounds, a new molecule, 970180, presented the most potency against BChE, with an IC50 of 4.24 ± 0.16 μM, and acted as a mixed-type inhibitor. Molecular dynamic simulations and absorption, distribution, metabolism and excretion prediction further confirmed its high potential as a good candidate of BChE inhibitor. Furthermore, cytotoxicity of molecule 970180 was not observed at concentrations up to 50 μM, and the molecule also showed a prominent neuroprotective effect compared with tacrine at 25 and 50 μM. Conclusion: This study provides an effective structure-based pharmacophore virtual screening method to discover BChE inhibitors and provide new choices for the development of BChE inhibitors, which may be beneficial for AD patients.
Collapse
|
21
|
A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer's disease. Eur J Pharmacol 2021; 897:173950. [PMID: 33607107 DOI: 10.1016/j.ejphar.2021.173950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive memory loss, declining language skills and other cognitive disorders. AD has brought great mental and economic burden to patients, families and society. However due to the complexity of AD's pathology, drugs developed for the treatment of AD often fail in clinical or experimental trials. The main problems of current anti-AD drugs are low efficacy due to mono-target method or side effects, especially high hepatotoxicity. To tackle these two main problems, multi-target-directed ligand (MTDL) based on "one molecule, multiple targets" has been studied. MTDLs can regulate multiple biological targets at the same time, so it has shown higher efficacy, better safety. As a natural active small molecule, α-mangostin (α-M) has shown potential multi-factor anti-AD activities in a series of studies, furthermore it also has a certain hepatoprotective effect. The good availability of α-M also provides support for its application in clinical research. In this work, multiple activities of α-M related to AD therapy were reviewed, which included anti-cholinesterase, anti-amyloid-cascade, anti-inflammation, anti-oxidative stress, low toxicity, hepatoprotective effects and drug formulation. It shows that α-M is a promising candidate for the treatment of AD.
Collapse
|
22
|
Przybyłowska M, Dzierzbicka K, Kowalski S, Chmielewska K, Inkielewicz-Stepniak I. Therapeutic Potential of Multifunctional Derivatives of Cholinesterase Inhibitors. Curr Neuropharmacol 2021; 19:1323-1344. [PMID: 33342413 PMCID: PMC8719290 DOI: 10.2174/1570159x19666201218103434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/07/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work is to review tacrine analogues from the last three years, which were not included in the latest review work, donepezil and galantamine hybrids from 2015 and rivastigmine derivatives from 2014. In this account, we summarize the efforts toward the development and characterization of non-toxic inhibitors of cholinesterases based on mentioned drugs with various interesting additional properties such as antioxidant, decreasing β-amyloid plaque aggregation, nitric oxide production, pro-inflammatory cytokines release, monoamine oxidase-B activity, cytotoxicity and oxidative stress in vitro and in animal model that classify these hybrids as potential multifunctional therapeutic agents for Alzheimer's disease. Moreover, herein, we have described the cholinergic hypothesis, mechanisms of neurodegeneration and current pharmacotherapy of Alzheimer's disease based on the restoration of cholinergic function through blocking enzymes that break down acetylcholine.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Szymon Kowalski
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
23
|
Deng X, Zhao S, Liu X, Han L, Wang R, Hao H, Jiao Y, Han S, Bai C. Polygala tenuifolia: a source for anti-Alzheimer's disease drugs. PHARMACEUTICAL BIOLOGY 2020; 58:410-416. [PMID: 32429787 PMCID: PMC7301717 DOI: 10.1080/13880209.2020.1758732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 05/30/2023]
Abstract
Context: Alzheimer's disease (AD) is a chronic neurodegenerative disease that originates from central nervous system lesions or recessions. Current estimates suggest that this disease affects over 35 million people worldwide. However, lacking effective drugs is the biggest handicap in treating AD. In traditional Chinese medicine (TCM), Polygala tenuifolia Willd. (Polygalaceae) is generally used to treat insomnia, memory dysfunction and neurasthenia.Objective: This review article explores the role of P. tenuifolia and its active components in anti-Alzheimer's disease.Methods: Literature for the last ten years was obtained through a search on PubMed, SciFinder, CNKI, Google Scholar, Web of Science, Science Direct and China Knowledge Resource Integrated with the following keywords: Polygala tenuifolia, polygalasaponin XXXII (PGS 32), tenuifolin, polygalacic acid, senegenin, tenuigenin, Alzheimer's disease.Results: Polygala tenuifolia and its active components have multiplex neuroprotective potential associated with AD, such as anti-Aβ aggregation, anti-Tau protein, anti-inflammation, antioxidant, anti-neuronal apoptosis, enhancing central cholinergic system and promote neuronal proliferation.Conclusions: Polygala tenuifolia and its active components exhibit multiple neuroprotective effects. Hence, P. tenuifolia is a potential drug against Alzheimer's disease, especially in terms of prevention.
Collapse
Affiliation(s)
- Xinxin Deng
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, P. R. China
| | - Shipeng Zhao
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, P. R. China
| | - Xinqi Liu
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, P. R. China
| | - Lu Han
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, P. R. China
| | - Ruizhou Wang
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, P. R. China
| | - Huifeng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Yanna Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Shuyan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Changcai Bai
- Ningxia Medical University Pharmacy College, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, P. R. China
| |
Collapse
|
24
|
Du W, Huang H, Xiao T, Jiang Y. Metal‐Free, Visible‐Light Promoted Intramolecular Azole C−H Bond Amination Using Catalytic Amount of I
2
: A Route to 1,2,3‐Triazolo[1,5‐
a
]quinazolin‐5(4
H
)‐ones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Weigen Du
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Hongtai Huang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology 727 South Jingming Road, Chenggong District Kunming 650500, P. R. of China
| |
Collapse
|
25
|
Le-Nhat-Thuy G, Nguyen Thi N, Pham-The H, Dang Thi TA, Nguyen Thi H, Nguyen Thi TH, Nguyen Hoang S, Nguyen TV. Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s disease. Bioorg Med Chem Lett 2020; 30:127404. [DOI: 10.1016/j.bmcl.2020.127404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
|
26
|
Rahimpour K, Teimuri‐Mofrad R. Star‐Shaped Ferrocene‐Based 1,4‐Disubstituted‐1,2,3‐Triazole Derivatives: Synthesis, Characterization, and Investigation of Linear Optical and Electrochemical Properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Keshvar Rahimpour
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Reza Teimuri‐Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
27
|
Sepehri N, Mohammadi‐Khanaposhtani M, Asemanipoor N, Hosseini S, Biglar M, Larijani B, Mahdavi M, Hamedifar H, Taslimi P, Sadeghian N, Gulcin I. Synthesis, characterization, molecular docking, and biological activities of coumarin–1,2,3‐triazole‐acetamide hybrid derivatives. Arch Pharm (Weinheim) 2020; 353:e2000109. [DOI: 10.1002/ardp.202000109] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Nima Sepehri
- Nano Alvand Company, Avicenna Tech Park Tehran University of Medical Sciences Tehran Iran
| | - Maryam Mohammadi‐Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute Babol University of Medical Sciences Babol Iran
| | - Nafise Asemanipoor
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center Alborz University of Medical Sciences Karaj Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science Bartin University Bartin Turkey
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science Ataturk University Erzurum Turkey
| |
Collapse
|
28
|
Siddiqui SZ, Arfan M, Abbasi MA, Aziz‐ur‐Rehman, Shah SAA, Ashraf M, Hussain S, Saleem RSZ, Rafique R, Khan KM. Discovery of Dual Inhibitors of Acetyl and Butrylcholinesterase and Antiproliferative Activity of 1,2,4‐Triazole‐3‐thiol: Synthesis and In Silico Molecular Study. ChemistrySelect 2020. [DOI: 10.1002/slct.201904905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Muhammad Arfan
- Department of ChemistryGovernment College University Lahore 54000 Pakistan
| | | | - Aziz‐ur‐Rehman
- Department of ChemistryGovernment College University Lahore 54000 Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy & Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns) Level 9, FF3, Universiti Teknologi MARA, Puncak Alam Campus 42300 Bandar Puncak Alam Selangor Darul Ehsan Malaysia
| | - Muhammad Ashraf
- Department of ChemistryThe Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Safdar Hussain
- Department of ChemistryThe Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry & Chemical EngineeringSBA School of Sciences & EngineeringLahore University of Management Sciences Opposite Sector-U, DHA, Lahore 54792 Lahore Pakistan
| | - Rafaila Rafique
- H. E. J. Research Institute of ChemistryInternational Center for Chemical and Biological SciencesUniversity of Karachi Karachi 75270 PakistanE-Mail
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of ChemistryInternational Center for Chemical and Biological SciencesUniversity of Karachi Karachi 75270 PakistanE-Mail
- Department of Clinical PharmacyInstitute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| |
Collapse
|
29
|
Wang C. Triethylamine sensing properties of ZnO nanostructures prepared by hydrothermal method at different pH values. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
N-1,2,3-triazole-isatin derivatives for cholinesterase and β-amyloid aggregation inhibition: A comprehensive bioassay study. Bioorg Chem 2020; 98:103753. [DOI: 10.1016/j.bioorg.2020.103753] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
|
31
|
Design, synthesis and biological evaluation of acridone glycosides as selective BChE inhibitors. Carbohydr Res 2020; 491:107977. [DOI: 10.1016/j.carres.2020.107977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
|
32
|
Kolawole OA, Olatomide A F, Banjo S. Anti-gastric cancer activity of 1,2,3-triazolo[4,5-d]pyrimidine hybrids (1,2,3-TPH): QSAR and molecular docking approaches. Heliyon 2020; 6:e03561. [PMID: 32215327 PMCID: PMC7090349 DOI: 10.1016/j.heliyon.2020.e03561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer as a dreaded disease which occurs in the digestive system of human being remain a threat to the medical world. Bioactivity of series of designed and synthesized molecular compounds containing triazole and pyrimidine moieties were subjected to quantum chemical calculations using B3LYP/6-31+G∗. The calculated molecular descriptors such as the EHOMO (eV), ELUMO (eV), band gap (eV), chemical hardness (η), global nucleophilicity, dipole moment (Debye), chemical potential, log P, molecular weight (amu) and Ovality. The descriptors that describe anti-gastric cancer activity of the studied compounds were used for QSAR analysis using SPSS and Gretl software packages for multiple linear regression (MLR), XLSTAT for partial least square (PLS) and MATLAB for artificial neural network (ANN). The methods (MLR, PLS, and ANN) were predictive. Nevertheless, ANN performed better than MLR and PLS. More so, molecular docking study was executed on the studied compounds and gastric cancer cell line (PDB ID:4oum); the docking studies showed that 2-(1-(2-(3-benzyl-5-(benzylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-yl)hydrazono)ethyl)phenol (A22) having the lowest binding affinity (-8.40 kcal/mol); this was correlated to the observed inhibitory activity of the compound against gastric cancer. Thus, it showed better inhibition than other studied compounds. The amino acid residues that were involved in stabilizing A22 in the active site of the 4oum are: VAL-9, ALA-10, THR-49, ASN-48, PRO-47 and TYR-46. Also, a good relationship was observed between the calculated binding affinity and the observed inhibition concentration (IC50).
Collapse
Affiliation(s)
- Oyebamiji Abel Kolawole
- Department of Basic Sciences, Adeleke University, P.M.B. 250, Ede, Osun state, Nigeria
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B., 4000, Ogbomoso, Oyo State, Nigeria
| | - Fadare Olatomide A
- Organic Chemistry Research Laboratory, Department of Chemistry, Obafemi Awolowo University, Ile-ife, Osun State, Nigeria
| | - Semire Banjo
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B., 4000, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
33
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
34
|
Mehrazar M, Hassankalhori M, Toolabi M, Goli F, Moghimi S, Nadri H, Bukhari SNA, Firoozpour L, Foroumadi A. Design and synthesis of benzodiazepine-1,2,3-triazole hybrid derivatives as selective butyrylcholinesterase inhibitors. Mol Divers 2019; 24:997-1013. [PMID: 31845210 DOI: 10.1007/s11030-019-10008-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023]
Abstract
A new series of compounds based on benzodiazepine-1,2,3-triazole were synthesized and evaluated as cholinesterase inhibitors by Ellman's method. The compounds proved to be selective inhibitors of butyrylcholinesterase (BuChE) over acetylcholinesterase. The most potent compound was 3,3-dimethyl-11-(3-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one, identified as a submicromolar inhibitor of BuChE with IC50 value of 0.2 µM. In addition, the amyloid-β self-aggregation evaluation studies for selected compounds showed potent inhibitory effects compared to donepezil. The docking and cell viability studies supported the potential of compound 9b-6 as significant BuChE inhibitor.
Collapse
Affiliation(s)
- Mehrdad Mehrazar
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hassankalhori
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Goli
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka, 2014, Saudi Arabia
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
35
|
Ravikumar C, Murugavel S. Structural correlation and computational quantum chemical explorations of two 1,2,3-triazolyl-methoxypyridine derivatives as CYP51 antifungal inhibitors. Struct Chem 2019. [DOI: 10.1007/s11224-019-01329-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Xu M, Peng Y, Zhu L, Wang S, Ji J, Rakesh K. Triazole derivatives as inhibitors of Alzheimer's disease: Current developments and structure-activity relationships. Eur J Med Chem 2019; 180:656-672. [DOI: 10.1016/j.ejmech.2019.07.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 01/09/2023]
|
37
|
Xu A, He F, Yu C, Qu Y, Zhang Q, Lv J, Zhang X, Ran Y, Wei C, Wu J. The Development of Small Molecule Inhibitors of Glutaminyl Cyclase and Isoglutaminyl Cyclase for Alzheimer's Disease. ChemistrySelect 2019. [DOI: 10.1002/slct.201902852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ana Xu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Feng He
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chenggong Yu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Ying Qu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Qiuqiong Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jiahui Lv
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Xiangna Zhang
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Yingying Ran
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Chao Wei
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| | - Jingde Wu
- College of PharmacyShanDong University, 4 4 West WenHua Road JiNan 250012 China
| |
Collapse
|
38
|
Jiang X, Wu G, Zalloum WA, Meuser ME, Dick A, Sun L, Chen CH, Kang D, Jing L, Jia R, Cocklin S, Lee KH, Liu X, Zhan P. Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Adv 2019; 9:28961-28986. [PMID: 32089839 PMCID: PMC7034945 DOI: 10.1039/c9ra05869a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The HIV-1 capsid (CA) protein plays crucial roles in both early and late stages of the viral life cycle, which has intrigued researchers to target it to develop anti-HIV drugs. Accordingly, in this research, we report the design, synthesis and biological evaluation of a series of novel phenylalanine derivatives as HIV-1 CA protein inhibitors using the Cu(I)-catalyzed azide and alkyne 1,3-dipolar cycloaddition (CuAAC) reaction. Among this series of inhibitors, compound II-10c displayed a remarkable anti-HIV activity (EC50 = 2.13 μM, CC50 > 35.49 μM). Furthermore, surface plasmon resonance (SPR) binding assays showed that compounds II-10c and PF-74 (lead compound) have similar affinities to HIV-1 CA monomer. Further investigation showed that the weak permeability and water solubility of representative compounds were probably the important factors that restricted their cell-based activity. Preliminary structure-activity relationships (SARs) were inferred based on the activities of these compounds, and their known structure. The most promising new compound was studied with molecular dynamics simulation (MD) to determine the preferred interactions with the drug target. Finally, the activities of members of this series of inhibitors were deeply inspected to find the potential reasons for their anti-HIV-1 activity from various perspectives. This highlights the important factors required to design compounds with improved potency.
Collapse
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, /Department of pharmacy, American University of Madaba, P.O Box 2882, Amman, 11821, Jordan
| | - Megan E Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Chin-Ho Chen
- Duke University Medical Center, Box 2926, Surgical Oncology Research Facility, Durham, NC, 27710, USA
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| |
Collapse
|
39
|
Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem 2019; 27:3511-3531. [PMID: 31300317 PMCID: PMC7185471 DOI: 10.1016/j.bmc.2019.07.005] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
The 1,2,3-triazole ring is a major pharmacophore system among nitrogen-containing heterocycles. These five-membered heterocyclic motifs with three nitrogen heteroatoms can be prepared easily using 'click' chemistry with copper- or ruthenium-catalysed azide-alkyne cycloaddition reactions. Recently, the 'linker' property of 1,2,3-triazoles was demonstrated, and a novel class of 1,2,3-triazole-containing hybrids and conjugates was synthesised and evaluated as lead compounds for diverse biological targets. These lead compounds have been demonstrated as anticancer, antimicrobial, anti-tubercular, antiviral, antidiabetic, antimalarial, anti-leishmanial, and neuroprotective agents. The present review summarises advances in lead compounds of 1,2,3-triazole-containing hybrids, conjugates, and their related heterocycles in medicinal chemistry published in 2018. This review will be useful to scientists in research fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Khurshed Bozorov
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China; Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan.
| | - Jiangyu Zhao
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China.
| | - Haji A Aisa
- Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Rd, Urumqi 830011, PR China.
| |
Collapse
|
40
|
Synthesis and Properties of 6-Aryl-4-azidocinnolines and 6-Aryl-4-(1,2,3-1 H-triazol-1-yl)cinnolines. Molecules 2019; 24:molecules24132386. [PMID: 31252657 PMCID: PMC6651781 DOI: 10.3390/molecules24132386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
An efficient approach towards the synthesis of 6-aryl-4-azidocinnolines was developed with the aim of exploring the photophysical properties of 6-aryl-4-azidocinnolines and their click reaction products with alkynes, 6-aryl-4-(1,2,3-1H-triazol-1-yl)cinnolines. The synthetic route is based on the Richter-type cyclization of 2-ethynyl-4-aryltriazenes with the formation of 4-bromo-6-arylcinnolines and nucleophilic substitution of a bromine atom with an azide functional group. The developed synthetic approach is tolerant to variations of functional groups on the aryl moiety. The resulting azidocinnolines were found to be reactive in both CuAAC with terminal alkynes and SPAAC with diazacyclononyne, yielding 4-triazolylcinnolines. It was found that 4-azido-6-arylcinnolines possess weak fluorescent properties, while conversion of the azido function into a triazole ring led to complete fluorescence quenching. The lack of fluorescence in triazoles could be explained by the non-planar structure of triazolylcinnolines and a possible photoinduced electron transfer (PET) mechanism. Among the series of 4-triazolylcinnoline derivatives a compound bearing hydroxyalkyl substituent at triazole ring was found to be cytotoxic to HeLa cells.
Collapse
|
41
|
AlFadly ED, Elzahhar PA, Tramarin A, Elkazaz S, Shaltout H, Abu-Serie MM, Janockova J, Soukup O, Ghareeb DA, El-Yazbi AF, Rafeh RW, Bakkar NMZ, Kobeissy F, Iriepa I, Moraleda I, Saudi MN, Bartolini M, Belal AS. Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur J Med Chem 2019; 167:161-186. [DOI: 10.1016/j.ejmech.2019.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
|
42
|
Gao F, Wang T, Gao M, Zhang X, Liu Z, Zhao S, Lv Z, Xiao J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur J Med Chem 2019; 165:323-331. [DOI: 10.1016/j.ejmech.2019.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
|
43
|
Ferlin F, Luciani L, Viteritti O, Brunori F, Piermatti O, Santoro S, Vaccaro L. Polarclean as a Sustainable Reaction Medium for the Waste Minimized Synthesis of Heterocyclic Compounds. Front Chem 2019; 6:659. [PMID: 30761286 PMCID: PMC6362304 DOI: 10.3389/fchem.2018.00659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Herein we report the use of Rhodiasolv© Polarclean as a novel polar aprotic solvent for the synthesis of decorated heterocycles via dipolar cycloaddition (isooxazoles) or intramolecular C–H functionalization processes (benzo-fused chromenes). The use of Polarclean allowed to isolate the final products in good yields by simple solid filtration or liquid-liquid phase separation, avoiding the need for chromatographic purification. Moreover, since in the synthesis of benzo-fused chromenes, the metal catalyst is retained in Polarclean, the catalyst/reaction medium can be easily reused for consecutive reaction runs, without any apparent loss in efficiency. This methodology is associated with a limited waste production. These results extend the applicability of Polarclean as a promising reaction medium for the replacement of toxic petrol-based solvent.
Collapse
Affiliation(s)
- Francesco Ferlin
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lorenzo Luciani
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Orlando Viteritti
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Francesco Brunori
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Oriana Piermatti
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Stefano Santoro
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Luigi Vaccaro
- Laboratory of Green Synthetic Organic Chemistry, Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| |
Collapse
|
44
|
Synthesis and Structure Elucidation of N′-(4-Methoxybenzylidene)-5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide. MOLBANK 2018. [DOI: 10.3390/m1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
N′-(4-Methoxybenzylidene)-5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide (3) was synthesized in a yield of 88% from an acid-catalyzed reaction of 5-methyl-1-phenyl-1H-1,2,3- triazole-4-carbohydrazide and 4-methoxybenzaldehyde in ethanol under reflux for 2.5 h. The structure of 3 was confirmed by the data obtained from infrared, nuclear magnetic resonance, mass spectroscopy, single crystal X-ray diffraction, and microanalysis.
Collapse
|
45
|
Das M, Prakash S, Nayak C, Thangavel N, Singh SK, Manisankar P, Devi KP. Dihydroactinidiolide, a natural product against Aβ25-35 induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies. Bioorg Chem 2018; 81:340-349. [DOI: 10.1016/j.bioorg.2018.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/03/2023]
|
46
|
Chi XQ, Hou B, Yang L, Zi CT, Lv YF, Li JY, Ren FC, Yuan MY, Hu JM, Zhou J. Design, synthesis and cholinesterase inhibitory activity of α-mangostin derivatives. Nat Prod Res 2018; 34:1380-1388. [PMID: 30456989 DOI: 10.1080/14786419.2018.1510925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao-Qian Chi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bo Hou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
| | - Cheng-Ting Zi
- College of Science, Yunnan Agricultural University, Kunming, People’s Republic of China
| | - Yong-Feng Lv
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jin-Yu Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Fu-Cai Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ming-Yan Yuan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
| | - Jun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’ s Republic of China
| |
Collapse
|
47
|
Prasher P, Sharma M. Medicinal chemistry of acridine and its analogues. MEDCHEMCOMM 2018; 9:1589-1618. [PMID: 30429967 PMCID: PMC6195008 DOI: 10.1039/c8md00384j] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023]
Abstract
'Acridine' along with its functional analogue 'Acridone' is the most privileged pharmacophore in medicinal chemistry with diverse applications ranging from DNA intercalators, endonuclease mimics, ratiometric selective ion sensors, and P-glycoprotein inhibitors in countering the multi-drug resistance, enzyme inhibitors, and reversals of neurodegenerative disorders. Their interaction with DNA and ability of selectively identifying numerous biologically useful ions has cemented exploitability of the acridone nucleus in modern day therapeutics. Additionally, most derivatives and salts of acridine are planar, crystalline, and stable displaying a strong fluorescence which, when coupled with their marked bio selectivity and low cytotoxicity, enables the studying and monitoring of several biochemical, metabolic, and pharmacological processes. In this review, a detailed picture covering the important therapeutic aspects of the acridone nucleus and its functional analogues is discussed.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|
48
|
Girek M, Szymański P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0590-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|