2
|
Padula A, Petruzzelli R, Philbert SA, Church SJ, Esposito F, Campione S, Monti M, Capolongo F, Perna C, Nusco E, Schmidt HH, Auricchio A, Cooper GJ, Polishchuk R, Piccolo P. Full-length ATP7B reconstituted through protein trans-splicing corrects Wilson disease in mice. Mol Ther Methods Clin Dev 2022; 26:495-504. [PMID: 36092366 PMCID: PMC9436707 DOI: 10.1016/j.omtm.2022.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 12/19/2022]
Abstract
Wilson disease (WD) is a genetic disorder of copper homeostasis, caused by deficiency of the copper transporter ATP7B. Gene therapy with recombinant adeno-associated vectors (AAV) holds promises for WD treatment. However, the full-length human ATP7B gene exceeds the limited AAV cargo capacity, hampering the applicability of AAV in this disease context. To overcome this limitation, we designed a dual AAV vector approach using split intein technology. Split inteins catalyze seamless ligation of two separate polypeptides in a highly specific manner. We selected a DnaE intein from Nostoc punctiforme (Npu) that recognizes a specific tripeptide in the human ATP7B coding sequence. We generated two AAVs expressing either the 5′-half of a codon-optimized human ATP7B cDNA followed by the N-terminal Npu DnaE intein or the C-terminal Npu DnaE intein followed by the 3′-half of ATP7B cDNA, under the control of a liver-specific promoter. Intravenous co-injection of the two vectors in wild-type and Atp7b−/− mice resulted in efficient reconstitution of full-length ATP7B protein in the liver. Moreover, Atp7b−/− mice treated with intein-ATP7B vectors were protected from liver damage and showed improvements in copper homeostasis. Taken together, these data demonstrate the efficacy of split intein technology to drive the reconstitution of full-length human ATP7B and to rescue copper-mediated liver damage in Atp7b−/− mice, paving the way to the development of a new gene therapy approach for WD.
Collapse
Affiliation(s)
- Agnese Padula
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale, University of Naples Federico II, Naples, Italy
| | - Sasha A. Philbert
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Manchester Academic Health Sciences Centre, Manchester, UK
| | - Stephanie J. Church
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Manchester Academic Health Sciences Centre, Manchester, UK
| | | | | | - Marcello Monti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Claudia Perna
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Hartmut H. Schmidt
- Department of Gastroenterology and Hepatology, University Hospital Duisburg-Essen, Essen, Germany
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Garth J.S. Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Manchester Academic Health Sciences Centre, Manchester, UK
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Corresponding author Pasquale Piccolo, PhD, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy.
| |
Collapse
|
3
|
Huong NTM, Hoa NPA, Ngoc ND, Mai NTP, Yen PH, Anh HTV, Hoa G, Dien TM. Mutation spectrum of ATP7B gene in pediatric patients with Wilson disease in Vietnam. Mol Genet Metab Rep 2022; 31:100861. [PMID: 35782615 PMCID: PMC9248214 DOI: 10.1016/j.ymgmr.2022.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/08/2022] Open
Abstract
Background Wilson disease (WD) is caused by mutations in the copper-transporting P-type adenosine triphosphatase encoded by the ATP7B gene. In this study, we screened and identified the ATP7B mutations among unrelated Vietnamese pediatric patients. Methods One-hundred-thirteen pediatric patients with clinically diagnosed WD were recruited. DNA samples were extracted from peripheral blood. Mutations in the ATP7B gene were identified by Sanger sequencing. Results Approximately 98% of the clinically diagnosed WD patients carried ATP7B mutations. A total of 35 different ATP7B variants were detected, including five novel mutations (L658P, L792P, T977K, IVS4 + 1G > A and IVS20 + 4A > G). Remarkably, this study revealed that S105* was the most prevalent variant (32.27%), followed by L1371P (9.09%), I1148T (7.27%), R778L (6.36%), T850I (5.45%), V176Sfs*28 and IVS14-2A > G (4.55%). Most ATP7B mutations were located in the exon 2 (37.73%), exon 16 (10.00%), exon 8 (9.55%), exon 20 (9.09%), exon 10 and exon 18 (5.45%), exon 14 (5.00%), exon 13 and intron 14 (4.55%). We developed a streamlined procedure to quickly characterize mutations in the ATP7B gene in the Vietnamese children, starting with sequencing exon 2 and subsequently to exons 8,10,13-16,18, and 20 to allow quick diagnosis of clinically suspected patients. Conclusion The mutational spectrum and hotspots of ATP7B gene in the Vietnamese population were fairly different from other East Asian populations. A streamlined procedure was developed to screen exon 2 in ATP7B gene among suspected WD patients to reduce genetically diagnostic cost, to facilitate early detection and intervention in countries with limited resources.
Collapse
Affiliation(s)
| | | | - Ngo Diem Ngoc
- Department of Human Genetics, National Children's Hospital, Hanoi, Viet Nam
| | | | - Pham Hai Yen
- Department of Hepatology, National Children's Hospital, Hanoi, Viet Nam
| | - Hoàng Thị Vân Anh
- Department of Hepatology, National Children's Hospital, Hanoi, Viet Nam
| | - Giang Hoa
- Gene Solutions, Ho Chi Minh City, Viet Nam
- Medical Genetics Institutes, Ho Chi Minh City, Viet Nam
| | - Tran Minh Dien
- Department of Human Genetics, National Children's Hospital, Hanoi, Viet Nam
- Department of Hepatology, National Children's Hospital, Hanoi, Viet Nam
| |
Collapse
|
9
|
Li X, Zhang W, Zhou D, Lv T, Xu A, Wang H, Zhao X, Zhang B, Li Y, Jia S, Wang Y, Wang X, Wu Z, Duan W, Wang Q, Nan Y, Shang J, Jiang W, Chen Y, Zheng S, Liu M, Sun L, You H, Jia J, Ou X, Huang J. Complex ATP7B mutation patterns in Wilson disease and evaluation of a yeast model for functional analysis of variants. Hum Mutat 2019; 40:552-565. [PMID: 30702195 DOI: 10.1002/humu.23714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Wilson disease (WD) is a rare autosomal recessive genetic disorder that is associated with various mutations in the ATP7B gene. Although ATP7B variants are frequently identified, the exact mutation patterns remain unknown because of the absence of pedigree studies, and the functional consequences of individual ATP7B variants remain to be clarified. In this study, we recruited 65 clinically diagnosed WD patients from 60 unrelated families. Pedigree analysis showed that besides several ATP7B homozygous variants (8/65, 12.3%), compound heterozygous variants (43/65, 66.2%) were present in the majority of WD patients. There were 20% of the patients had one (12/65, 18.5%) or multiple (1/65, 1.5%) variants in only a single allele, characterized by a high ratio of splicing or frameshift variants. Nine ATP7B variants were cloned into the pAG426GPD yeast expression vector to evaluate their functional consequences, and the results suggested different degrees of functional disruption from mild or uncertain to severe, consistent with the corresponding phenotypes. Our study revealed the complex ATP7B mutation patterns in WD patients and the applicability of a yeast model system to the evaluation of the functional consequences of ATP7B variants, which is essential for WD cases that are difficult to interpret.
Collapse
Affiliation(s)
- Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Zhang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Donghu Zhou
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Tingxia Lv
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hejing Wang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Siyu Jia
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhen Wu
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Weijia Duan
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qianyi Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongpeng Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sujun Zheng
- Artificial Liver Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Artificial Liver Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Liying Sun
- Liver Transplant Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jidong Jia
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China.,Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|