1
|
Faucon A, Renault J, Josts I, Couchot J, Renaud JL, Hoegy F, Plésiat P, Tidow H, Gaillard S, Mislin GLA. Synthesis and antibacterial properties under blue LED light of conjugates between the siderophore desferrioxamine B (DFOB) and an Iridium(III) complex. Bioorg Med Chem 2024; 112:117842. [PMID: 39173538 DOI: 10.1016/j.bmc.2024.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
The decline of antibiotics efficacy worldwide has recently reached a critical point urging for the development of new strategies to regain upper hand on multidrug resistant bacterial strains. In this context, the raise of photodynamic therapy (PDT), initially based on organic photosensitizers (PS) and more recently on organometallic PS, offers promising perspectives. Many PS exert their biological effects through the generation of reactive oxygen species (ROS) able to freely diffuse into and to kill surrounding bacteria. Hijacking of the bacterial iron-uptake systems with siderophore-PS conjugates would specifically target pathogens. Here, we report the synthesis of unprecedented conjugates between the siderophore desferrioxamine B (DFOB) and an antibacterial iridium(III) PS. Redox properties of the new conjugates have been determined at excited states and compared to that of an antibacterial iridium PS previously reported by our groups. Tested on nosocomial pathogen Pseudomonas aeruginosa and other bacteria, these conjugates demonstrated significant inhibitory activity when activated with blue LED light. Ir(III) conjugate and iridium free DFOB-2,2'-dipyridylamine ligands were crystallized in complex with FoxA, the outer membrane transporter involved in DFOB uptake in P. aeruginosa and revealed details of the binding mode of these unprecedented conjugates.
Collapse
Affiliation(s)
- Aline Faucon
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Julien Renault
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Inokentijs Josts
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), 22761 Hamburg, Germany; Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 22761 Hamburg, Germany
| | - Julie Couchot
- Université de Franche-Comté, UMR6249 CNRS Chrono-environnement, F-25000 Besançon, France
| | - Jean-Luc Renaud
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 75005 Paris, France
| | - Françoise Hoegy
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France
| | - Patrick Plésiat
- Université de Franche-Comté, UMR6249 CNRS Chrono-environnement, F-25000 Besançon, France
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), 22761 Hamburg, Germany; Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 22761 Hamburg, Germany
| | - Sylvain Gaillard
- Normandie University, LCMT, ENSICAEN, UNICAEN, CNRS, 6 Bd du Maréchal Juin, 14050 Caen, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 300 Boulevard Sébastien Brant, F-67412 Illkirch, Strasbourg, France.
| |
Collapse
|
2
|
Busto N, Vigueras G, Cutillas N, García B, Ruiz J. Inert cationic iridium(III) complexes with phenanthroline-based ligands: application in antimicrobial inactivation of multidrug-resistant bacterial strains. Dalton Trans 2022; 51:9653-9663. [PMID: 35713595 DOI: 10.1039/d2dt00752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antimicrobial activity of a new series of heteroleptic iridium(III) complexes of the type [Ir(C^N)2(N^N)][PF6] (C^N = deprotonated 2-phenylbenzimidazole-κN, κC; N^N = phen (Ir1), dpq (Ir2), dppz (Ir3), dppn (Ir4), and dppz-idzo (Ir5)) was studied towards two Gram positive (vancomycin-resistant Enterococcus faecium and a methicillin-resistant Staphylococcus aureus) and two Gram negative (Acinetobacter baumanii and Pseudomonas aeruginosa) multidrug-resistant bacterial strains of clinical interest. Although the complexes were inactive towards Gram negative bacteria, their effectiveness against Gram positive strains was remarkable, especially for Ir1 and Ir2, the most bactericidal complexes that were even more active (10 times) than the fluoroquinolone antibiotic norfloxacin and displayed no toxicity in human kidney cells (HEK293). Mechanistic studies revealed that the cell wall and membrane of MRSA S. aureus remained intact on treatment with these compounds and that DNA was not their main target. It is important to note that the complexes were able to induce ROS generation, this being the feature key to their antimicrobial activity.
Collapse
Affiliation(s)
- Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001, Burgos, Spain. .,Departamento de Ciencias de la Salud. Facultad de Ciencias de la Salud. Universidad de Burgos, Hospital Militar, Paseo de los Comendadores, s/n, 09001 Burgos, Spain.
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001, Burgos, Spain.
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain.
| |
Collapse
|
3
|
Pandeya A, Yang L, Alegun O, Karunasena C, Risko C, Li Z, Wei Y. Biotinylation as a tool to enhance the uptake of small molecules in Gram-negative bacteria. PLoS One 2021; 16:e0260023. [PMID: 34767592 PMCID: PMC8589159 DOI: 10.1371/journal.pone.0260023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/31/2021] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance is a major public health concern. The shrinking selection of effective antibiotics and lack of new development is making the situation worse. Gram-negative bacteria more specifically pose serious threat because of their double layered cell envelope and effective efflux systems, which is a challenge for drugs to penetrate. One promising approach to breach this barrier is the "Trojan horse strategy". In this technique, an antibiotic molecule is conjugated with a nutrient molecule that helps the antibiotic to enter the cell through dedicated transporters for the nutrient. Here, we explored the approach using biotin conjugation with a florescent molecule Atto565 to determine if biotinylation enhances accumulation. Biotin is an essential vitamin for bacteria and is obtained through either synthesis or uptake from the environment. We found that biotinylation enhanced accumulation of Atto565 in E. coli. However, the enhancement did not seem to be due to uptake through biotin transporters since the presence of free biotin had no observable impact on accumulation. Accumulated compound was mostly in the periplasm, as determined by cell fractionation studies. This was further confirmed through the observation that expression of streptavidin in the periplasm specifically enhanced the accumulation of biotinylated Atto565. This enhancement was not observed when streptavidin was expressed in the cytoplasm indicating no significant distribution of the compound inside the cytoplasm. Using gene knockout strains, plasmid complementation and mutagenesis studies we demonstrated that biotinylation made the compound a better passenger through OmpC, an outer membrane porin. Density functional theory (DFT)-based evaluation of the three-dimensional geometries showed that biotinylation did not directly stabilize the conformation of the compound to make it favorable for the entry through a pore. Further studies including molecular dynamics simulations are necessary to determine the possible mechanisms of enhanced accumulation of the biotinylated Atto565.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Olaniyi Alegun
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Chamikara Karunasena
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
- Centre for Applied Energy and Research, University of Kentucky, Lexington, KY, United States of America
| | - Chad Risko
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
- Centre for Applied Energy and Research, University of Kentucky, Lexington, KY, United States of America
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
4
|
Hohlfeld BF, Gitter B, Kingsbury CJ, Flanagan KJ, Steen D, Wieland GD, Kulak N, Senge MO, Wiehe A. Dipyrrinato-Iridium(III) Complexes for Application in Photodynamic Therapy and Antimicrobial Photodynamic Inactivation. Chemistry 2021; 27:6440-6459. [PMID: 33236800 PMCID: PMC8248005 DOI: 10.1002/chem.202004776] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Indexed: 12/24/2022]
Abstract
The generation of bio-targetable photosensitizers is of utmost importance to the emerging field of photodynamic therapy and antimicrobial (photo-)therapy. A synthetic strategy is presented in which chelating dipyrrin moieties are used to enhance the known photoactivity of iridium(III) metal complexes. Formed complexes can thus be functionalized in a facile manner with a range of targeting groups at their chemically active reaction sites. Dipyrrins with N- and O-substituents afforded (dipy)iridium(III) complexes via complexation with the respective Cp*-iridium(III) and ppy-iridium(III) precursors (dipy=dipyrrinato, Cp*=pentamethyl-η5 -cyclopentadienyl, ppy=2-phenylpyridyl). Similarly, electron-deficient [IrIII (dipy)(ppy)2 ] complexes could be used for post-functionalization, forming alkenyl, alkynyl and glyco-appended iridium(III) complexes. The phototoxic activity of these complexes has been assessed in cellular and bacterial assays with and without light; the [IrIII (Cl)(Cp*)(dipy)] complexes and the glyco-substituted iridium(III) complexes showing particular promise as photomedicine candidates. Representative crystal structures of the complexes are also presented.
Collapse
Affiliation(s)
- Benjamin F. Hohlfeld
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| | | | - Christopher J. Kingsbury
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
| | - Keith J. Flanagan
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
| | - Dorika Steen
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| | | | - Nora Kulak
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- Institut für ChemieOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
- Institute for Advanced Study (TUM-IAS)Technical University of MunichLichtenbergstrasse 2a85748GarchingGermany
| | - Arno Wiehe
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| |
Collapse
|
5
|
Biegański P, Szczupak Ł, Arruebo M, Kowalski K. Brief survey on organometalated antibacterial drugs and metal-based materials with antibacterial activity. RSC Chem Biol 2021; 2:368-386. [PMID: 34458790 PMCID: PMC8341851 DOI: 10.1039/d0cb00218f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Rising bacterial antibiotic resistance is a global threat. To deal with it, new antibacterial agents and antiseptic materials need to be developed. One alternative in this quest is the organometallic derivatization of well-established antibacterial drugs and also the fabrication of advanced metal-based materials having antibacterial properties. Metal-based agents and materials often show new modes of antimicrobial action which enable them to overcome drug resistance in pathogenic bacterial strains. This review summarizes recent (2017-2020) progress in the field of organometallic-derived antibacterial drugs and metal-based materials having antibacterial activity. Specifically, it covers organometallic derivatives of antibacterial drugs including β-lactams, ciprofloxacin, isoniazid, trimethoprim, sulfadoxine, sulfamethoxazole, and ethambutol as well as non-antibacterial drugs like metformin, phenformin and aspirin. Recent advances and reported clinical trials in the use of metal-based nanomaterials as antibiofouling coatings on medical devices, as photocatalytic agents in indoor air pollutant control, and also as photodynamic/photothermal antimicrobial agents are also summarized.
Collapse
Affiliation(s)
- Przemysław Biegański
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź Tamka 12 91-403 Łódź Poland +48-42-635-5759
| | - Łukasz Szczupak
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź Tamka 12 91-403 Łódź Poland +48-42-635-5759
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza 50009 Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro - Edificio I + D, C/Poeta Mariano Esquillor S/N 50018 Zaragoza Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN 28029 Madrid Spain
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź Tamka 12 91-403 Łódź Poland +48-42-635-5759
| |
Collapse
|
6
|
Michaut M, Steffen A, Contreras JM, Morice C, Paulen A, Schalk IJ, Plésiat P, Mislin GLA. Chryso-lactams:Gold(I) derivatives of ampicillin with specific activity against Gram-positive pathogens. Bioorg Med Chem Lett 2020; 30:127098. [PMID: 32173196 DOI: 10.1016/j.bmcl.2020.127098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Mathieu Michaut
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Alexandre Steffen
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Jean-Marie Contreras
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Christophe Morice
- Prestwick Chemical, PC SAS, 220 Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France
| | - Aurélie Paulen
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France
| | - Isabelle J Schalk
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France
| | - Patrick Plésiat
- Laboratoire de Bactériologie, UMR 6249 CNRS Chrono-Environnement, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon, France
| | - Gaëtan L A Mislin
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Boulevard Sébastien Brant, 67400 Illkirch-Graffenstaden, France; Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), 67400 Illkirch-Graffenstaden, France.
| |
Collapse
|
7
|
Frei A. Metal Complexes, an Untapped Source of Antibiotic Potential? Antibiotics (Basel) 2020; 9:E90. [PMID: 32085590 PMCID: PMC7168053 DOI: 10.3390/antibiotics9020090] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/08/2023] Open
Abstract
With the widespread rise of antimicrobial resistance, most traditional sources for new drug compounds have been explored intensively for new classes of antibiotics. Meanwhile, metal complexes have long had only a niche presence in the medicinal chemistry landscape, despite some compounds, such as the anticancer drug cisplatin, having had a profound impact and still being used extensively in cancer treatments today. Indeed, metal complexes have been largely ignored for antibiotic development. This is surprising as metal compounds have access to unique modes of action and exist in a wider range of three-dimensional geometries than purely organic compounds. These properties make them interesting starting points for the development of new drugs. In this perspective article, , the encouraging work that has been done on antimicrobial metal complexes, mainly over the last decade, is highlighted. Promising metal complexes, their activity profiles, and possible modes of action are discussed and issues that remain to be addressed are emphasized.
Collapse
Affiliation(s)
- Angelo Frei
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
8
|
Oliveira GDFS, Gouveia FS, Pinheiro ADA, do Nascimento Neto LG, de Vasconcelos MA, Teixeira EH, Gondim ACS, Lopes LGDF, de Carvalho IMM, Sousa EHS. An anthracene-pendant ruthenium( ii) complex conjugated to a biotin anchor, an essential handle for photo-induced anti-cancer activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj00209g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient avidin binding and selective cancer cell response upon light irradiation of an enhanced ROS photogenerator biotinylated ruthenium complex.
Collapse
Affiliation(s)
| | - Florencio Sousa Gouveia
- Group of Bioinorganic
- Department of Organic and Inorganic Chemistry
- Federal University of Ceará
- Fortaleza
- Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas
- Departamento de Patologia e Medicina Legal
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas
- Departamento de Patologia e Medicina Legal
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas
- Departamento de Patologia e Medicina Legal
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Ana Claudia Silva Gondim
- Group of Bioinorganic
- Department of Organic and Inorganic Chemistry
- Federal University of Ceará
- Fortaleza
- Brazil
| | | | | | | |
Collapse
|
9
|
Elie M, Mahoro GU, Duverger E, Renaud JL, Daniellou R, Gaillard S. Cytotoxicity of cationic NHC copper(I) complexes coordinated to 2,2'-bis-pyridyl ligands. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|