1
|
Dai JX, Yu Y, You LX, Zhong HL, Li YP, Wang AJ, Chorover J, Feng RW, Alwathnani HA, Herzberg M, Rensing C. Integrated induction of silver resistance determinants and production of extracellular polymeric substances in Cupriavidus metallidurans BS1 in response to silver ions and silver nanoparticles. CHEMOSPHERE 2024; 366:143503. [PMID: 39401671 DOI: 10.1016/j.chemosphere.2024.143503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Although the antimicrobial mechanisms of nanomaterials have been extensively investigated, bacterial defense mechanisms associated with AgNPs have not been fully elucidated. We here report that dissolved Ag+ (>0.05 μg mL-1) displayed higher toxicity on cell growth of strain Cupriavidus metallidurans BS1 (GCA_003260185.2) in comparison to 2 and 20 nm AgNPs. The genes necessary for synthesis of distinct abundance and composition of extracellular polymeric substances (EPS) were induced in strain BS1 exposed to Ag stress. This resulted in 20.1% (Ag(I)-EPS) and 24.2% (2 nm AgNPs-EPS) of the CO band integrated intensities being converted into C-OH/C-O-C group vibrations and the Ag-O bond was formed between EPS and 20 nm AgNPs. Meanwhile, the expression of primary resistance genes of the cus, sil and cup operon encoding HME-RND-driven efflux systems as well as a PIB1-type ATPase (CupA) were significantly induced after exposure to Ag(I), 2 and 20 nm AgNPs, respectively. Furthermore, distinct genes involved in biosynthesis pathways responsible for production of EPS were induced to relieve the toxicity of Ag(I), 2 nm and 20 nm AgNPs. This combined action is one potential reason why strain BS1 displayed distinct resistances in response to Ag(I) compared to 2 and 20 nm AgNPs. This work will help in understanding processes important in bacterial defensive mechanisms to AgNPs.
Collapse
Affiliation(s)
- Jia-Xin Dai
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hong-Lin Zhong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85719, USA
| | - Ren-Wei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Solar Materials Biotechnology (SOMA), Helmholtz Centre for Environmental Research GmbH (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
2
|
Hirth N, Wiesemann N, Krüger S, Gerlach MS, Preußner K, Galea D, Herzberg M, Große C, Nies DH. A gold speciation that adds a second layer to synergistic gold-copper toxicity in Cupriavidus metallidurans. Appl Environ Microbiol 2024; 90:e0014624. [PMID: 38557120 PMCID: PMC11022561 DOI: 10.1128/aem.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephanie Krüger
- Microscopy Unit, Biocenter, Martin Luther University Halle Wittenberg, Wittenberg, Germany
| | - Michelle-Sophie Gerlach
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kilian Preußner
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Cornelia Große
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
Manutsyan T, Blbulyan S, Vassilian A, Semashko T, Kirakosyan G, Gabrielyan L, Trchounian K, Poladyan A. Gold nanoparticles activate hydrogenase synthesis and improve heterotrophic growth of Ralstonia eutropha H16. FEMS Microbiol Lett 2024; 371:fnad138. [PMID: 38167703 DOI: 10.1093/femsle/fnad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/17/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024] Open
Abstract
Ralstonia eutropha is a facultative chemolithoautotrophic aerobic bacterium that grows using organic substrates or H2 and CO2. Hydrogenases (Hyds) are synthesized under lithoautotrophic, or energy-limited heterotrophic conditions and are used in enzyme fuel cells (EFC) as anodic catalysts. The effects of chemically synthesized gold nanoparticles (Au-NPs) on R. eutropha H16 growth, oxidation-reduction potential (ORP) kinetics, and H2-oxidizing Hyd activity were investigated in this study. Atomic force microscopy showed that thin, plate-shaped Au-NPs were in the nanoscale range with an average size of 5.68 nm. Compared with growth in medium without Au-NPs (control), the presence of Au-NPs stimulated growth, and resulted in a decrease in ORP to negative values. H2-oxidizing activity was not detected in the absence of Au-NPs, but activity was significantly induced (12 U/g CDW) after 24 h of growth with 18 ng/ml, increasing a further 4-fold after 72 h of growth. The results demonstrate that Au-NPs primarily influence the membrane-bound Hyd. In contrast to R. eutropha, Au-NPs had a negligible or negative effect on the growth, Hyd activity, and H2 production of Escherichia coli. The findings of this study offer new perspectives for the production of oxygen-tolerant Hyds and the development of EFCs.
Collapse
Affiliation(s)
- Tatevik Manutsyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
| | - Syuzanna Blbulyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
| | - Anait Vassilian
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan, Armenia
| | | | | | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan, Armenia
| | - Anna Poladyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan, Armenia
| |
Collapse
|
4
|
Sanyal SK, Pukala T, Mittal P, Reith F, Brugger J, Etschmann B, Shuster J. From biomolecules to biogeochemistry: Exploring the interaction of an indigenous bacterium with gold. CHEMOSPHERE 2023; 339:139657. [PMID: 37543229 DOI: 10.1016/j.chemosphere.2023.139657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Specialised microbial communities colonise the surface of gold particles in soils/sediments, and catalyse gold dissolution and re-precipitation, thereby contributing to the environmental mobility and toxicity of this 'inert' precious metal. We assessed the proteomic and physiological response of Serratia proteamaculans, the first metabolically active bacterium enriched and isolated directly from natural gold particles, when exposed to toxic levels of soluble Au3+ (10 μM). The results were compared to a metal-free blank, and to cultures exposed to similarly toxic levels of soluble Cu2+ (0.1 mM); Cu was chosen for comparison because it is closely associated with Au in nature due to similar geochemical properties. A total of 273 proteins were detected from the cells that experienced the oxidative effects of soluble Au, of which 139 (51%) were upregulated with either sole expression (31%) or had synthesis levels greater than the Au-free control (20%). The majority (54%) of upregulated proteins were functionally different from up-regulated proteins in the bacteria-copper treatment. These proteins were related to broad functions involving metabolism and biogenesis, followed by cellular process and signalling, indicating significant specificity for Au. This proteomic study revealed that the bacterium upregulates the synthesis of various proteins related to oxidative stress response (e.g., Monothiol-Glutaredoxin, Thiol Peroxidase, etc.) and cellular damage repair, which leads to the formation of metallic gold nanoparticles less toxic than ionic gold. Therefore, indigenous bacteria may mediate the toxicity of Au through two different yet simultaneous processes: i) repairing cellular components by replenishing damaged proteins and ii) neutralising reactive oxygen species (ROS) by up-regulating the synthesis of antioxidants. By connecting the fields of molecular bacteriology and environmental biogeochemistry, this study is the first step towards the development of biotechnologies based on indigenous bacteria applied to gold bio-recovery and bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Santonu K Sanyal
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia.
| | - Tara Pukala
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, 5001, Australia; School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5001, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, 5001, Australia
| | | | - Joël Brugger
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Jeremiah Shuster
- Department of Earth Sciences, Western University, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
5
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
6
|
Zhang Y, Geng Y, Li S, Shi T, Ma X, Hua R, Fang L. Efficient Knocking Out of the Organophosphorus Insecticides Degradation Gene opdB in Cupriavidus nantongensis X1 T via CRISPR/ Cas9 with Red System. Int J Mol Sci 2023; 24:ijms24066003. [PMID: 36983076 PMCID: PMC10056268 DOI: 10.3390/ijms24066003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Cupriavidus nantongensis X1T is a type strain of the genus Cupriavidus, that can degrade eight kinds of organophosphorus insecticides (OPs). Conventional genetic manipulations in Cupriavidus species are time-consuming, difficult, and hard to control. The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) system has emerged as a powerful tool for genome editing applied in prokaryotes and eukaryotes due to its simplicity, efficiency, and accuracy. Here, we combined CRISPR/Cas9 with the Red system to perform seamless genetic manipulation in the X1T strain. Two plasmids, pACasN and pDCRH were constructed. The pACasN plasmid contained Cas9 nuclease and Red recombinase, and the pDCRH plasmid contained the dual single-guide RNA (sgRNA) of organophosphorus hydrolase (OpdB) in the X1T strain. For gene editing, two plasmids were transferred to the X1T strain and a mutant strain in which genetic recombination had taken place, resulting in the targeted deletion of opdB. The incidence of homologous recombination was over 30%. Biodegradation experiments suggested that the opdB gene was responsible for the catabolism of organophosphorus insecticides. This study was the first to use the CRISPR/Cas9 system for gene targeting in the genus Cupriavidus, and it furthered our understanding of the process of degradation of organophosphorus insecticides in the X1T strain.
Collapse
Affiliation(s)
- Yufei Zhang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yuehan Geng
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shengyang Li
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Taozhong Shi
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xin Ma
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
- Institute for Green Development, Anhui Agricultural University, Hefei 230036, China
| | - Liancheng Fang
- Anhui Provincial Key Laboratory for Quality and Safety of Agri-Products, School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
- Institute for Green Development, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Novel NHC-Based Au(I) Complexes as Precursors of Highly Pure Au(0) Nuggets under Oxidative Conditions. Molecules 2023; 28:molecules28052302. [PMID: 36903548 PMCID: PMC10005697 DOI: 10.3390/molecules28052302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The Lewis-acidic character and robustness of NHC-Au(I) complexes enable them to catalyze a large number of reactions, and they are enthroned as the catalysts of choice for many transformations among polyunsaturated substrates. More recently, Au(I)/Au(III) catalysis has been explored either by utilizing external oxidants or by seeking oxidative addition processes with catalysts featuring pendant coordinating groups. Herein, we describe the synthesis and characterization of N-heterocyclic carbene (NHC)-based Au(I) complexes, with and without pendant coordinating groups, and their reactivity in the presence of different oxidants. We demonstrate that when using iodosylbenzene-type oxidants, the NHC ligand undergoes oxidation to afford the corresponding NHC=O azolone products concomitantly with quantitative gold recovery in the form of Au(0) nuggets ~0.5 mm in size. The latter were characterized by SEM and EDX-SEM showing purities above 90%. This study shows that NHC-Au complexes can follow decomposition pathways under certain experimental conditions, thus challenging the believed robustness of the NHC-Au bond and providing a novel methodology to produce Au(0) nuggets.
Collapse
|
8
|
Kugler A, Brigmon RL, Friedman A, Coutelot FM, Polson SW, Seaman JC, Simpson W. Bioremediation of copper in sediments from a constructed wetland ex situ with the novel bacterium Cupriavidus basilensis SRS. Sci Rep 2022; 12:17615. [PMID: 36271237 PMCID: PMC9587019 DOI: 10.1038/s41598-022-20930-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/21/2022] [Indexed: 01/21/2023] Open
Abstract
The H-02 constructed wetland was designed to remove metals (primarily copper and zinc) to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The concentration of Cu and Zn in the sediments has increased over the lifetime of the wetland and is a concern. A bioremediation option was investigated at the laboratory scale utilizing a newly isolated bacterium of the copper metabolizing genus Cupriavidus isolated from Tim's Branch Creek, a second-order stream that eventually serves as a tributary to the Savannah River, contaminated with uranium and other metals including copper, nickel, and mercury. Cupriavidus basilensis SRS is a rod-shaped, gram-negative bacterium which has been shown to have predatory tendencies. The isolate displayed resistance to the antibiotics ofloxacin, tetracycline, ciprofloxacin, select fungi, as well as Cu2+ and Zn2+. Subsequent ribosomal sequencing demonstrated a 100% confidence for placement in the genus Cupriavidus and a 99.014% match to the C. basilensis type strain. When H-02 wetland samples were inoculated with Cupriavidus basilensis SRS samples showed significant (p < 0.05) decrease in Cu2+ concentrations and variability in Zn2+ concentrations. Over the 72-h incubation there were no significant changes in the inoculate densities (106-108 cells/ML) indicating Cupriavidus basilensis SRS resiliency in this environment. This research expands our understanding of the Cupriavidus genus and demonstrates the potential for Cupriavidus basilensis SRS to bioremediate sites impacted with heavy metals, most notably copper.
Collapse
Affiliation(s)
- Alex Kugler
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Robin L. Brigmon
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Abby Friedman
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Fanny M. Coutelot
- grid.26090.3d0000 0001 0665 0280Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC USA
| | - Shawn W. Polson
- grid.33489.350000 0001 0454 4791Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE USA
| | - John C. Seaman
- grid.213876.90000 0004 1936 738XUniversity of Georgia Savannah River Ecology Laboratory, Aiken, SC USA
| | - Waltena Simpson
- grid.263782.a0000 0004 1936 8892Department of Biological Sciences, South Carolina State University, Orangeburg, SC USA
| |
Collapse
|
9
|
Loss of mobile genomic islands in metal resistant, hydrogen-oxidizing Cupriavidus metallidurans. Appl Environ Microbiol 2021; 88:e0204821. [PMID: 34910578 DOI: 10.1128/aem.02048-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the metal resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (ΔcadA ΔzntA ΔdmeF ΔfieF) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic re-resequencing of strains CH34, AE104, Δe4 and others revealed that the genomic islands CMGIs 2, 3, 4, D, E, but no other islands or recessive determinants, were deleted in some of these strains. Provided CH34 wild type was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as previously surmised, simply absent from the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. Analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and up-regulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and the same time ensures metal homeostasis. Significance In their natural environment, bacteria continually acquire genes by horizontal gene transfer and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes, but instead may lose them. This was indeed observed in Cupriavidus metallidurans for loss key metal-resistance determinants when no selection pressure was continuously kept. However, some recessive metal-resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may only remain in the genome because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.
Collapse
|
10
|
Alotaibi BS, Khan M, Shamim S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021; 9:1628. [PMID: 34442707 PMCID: PMC8402239 DOI: 10.3390/microorganisms9081628] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing heavy metals from contaminated environments. Bacteria have several methods of processing heavy metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms. Bacillus spp. are model Gram-positive bacteria that have been studied extensively for their biosorption abilities and molecular mechanisms that enable their survival as well as their ability to remove and detoxify heavy metals. This review aims to highlight the molecular methods of Bacillus spp. in removing various heavy metals ions from contaminated environments.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| |
Collapse
|
11
|
Behind the shield of Czc: ZntR controls expression of the gene for the zinc-exporting P-type ATPase ZntA in Cupriavidus metallidurans. J Bacteriol 2021; 203:JB.00052-21. [PMID: 33685972 PMCID: PMC8117531 DOI: 10.1128/jb.00052-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the metallophilic beta-proteobacterium Cupriavidus metallidurans, the plasmid-encoded Czc metal homeostasis system adjusts the periplasmic zinc, cobalt and cadmium concentration, which influences subsequent uptake of these metals into the cytoplasm. Behind this shield, the PIB2-type APTase ZntA is responsible for removal of surplus cytoplasmic zinc ions, thereby providing a second level of defense against toxic zinc concentrations. ZntA is the counterpart to the Zur-regulated zinc uptake system ZupT and other import systems; however, the regulator of zntA expression was unknown. The chromid-encoded zntA gene is adjacent to the genes czcI2C2B2', which are located on the complementary DNA strand and transcribed from a common promoter region. These genes encode homologs of plasmid pMOL30-encoded Czc components. Candidates for possible regulators of zntA were identified and subsequently tested: CzcI, CzcI2, and the MerR-type gene products of the locus tags Rmet_2302, Rmet_0102, Rmet_3456. This led to the identification of Rmet_3456 as ZntR, the main regulator of zntA expression. Moreover, both CzcIs decreased Czc-mediated metal resistance, possibly to avoid "over-excretion" of periplasmic zinc ions, which could result in zinc starvation due to diminished zinc uptake into the cytoplasm. Rmet_2302 was identified as CadR, the regulator of the cadA gene for an important cadmium-exporting PIB2-type ATPase, which provides another system for removal of cytoplasmic zinc and cadmium. Rmet_0102 was not involved in regulation of the metal resistance systems examined here. Thus, ZntR forms a complex regulatory network with CadR, Zur and the CzcIs. Moreover, these discriminating regulatory proteins assign the efflux systems to their particular function.ImportanceZinc is an essential metal for numerous organisms from humans to bacteria. The transportome of zinc uptake and efflux systems controls the overall cellular composition and zinc content in a double feed-back loop. Zinc starvation mediates, via the Zur regulator, an up-regulation of the zinc import capacity via the ZIP-type zinc importer ZupT and an amplification of zinc storage capacity, which together raise the cellular zinc content again. On the other hand, an increasing zinc content leads to ZntR-mediated up-regulation of the zinc efflux system ZntA, which decreases the zinc content. Together, the Zur regulon components and ZntR/ZntA balance the cellular zinc content under both high external zinc concentrations and zinc starvation conditions.
Collapse
|
12
|
Correddu D, Di Nardo G, Gilardi G. Self-Sufficient Class VII Cytochromes P450: From Full-Length Structure to Synthetic Biology Applications. Trends Biotechnol 2021; 39:1184-1207. [PMID: 33610332 DOI: 10.1016/j.tibtech.2021.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
Members of class VII cytochromes P450 are catalytically self-sufficient enzymes containing a phthalate dioxygenase reductase-like domain fused to the P450 catalytic domain. Among these, CYP116B46 is the first enzyme for which the 3D structure of the whole polypeptide chain has been solved, shedding light on the interaction between its domains, which is crucial for catalysis. Most of these enzymes have been isolated from extremophiles or detoxifying bacteria that can carry out regio- and enantioselective oxidation of compounds of biotechnological interest. Protein engineering has generated mutants that can perform challenging organic reactions such as the anti-Markovnikov alkene oxidation. This potential, combined with the detailed 3D structure, forms the basis for further directed evolution studies aimed at widening their biotechnological exploitation.
Collapse
Affiliation(s)
- Danilo Correddu
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
13
|
Sanyal SK, Brugger J, Etschmann B, Pederson SM, Delport PWJ, Dixon R, Tearle R, Ludington A, Reith F, Shuster J. Metal resistant bacteria on gold particles: Implications of how anthropogenic contaminants could affect natural gold biogeochemical cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138698. [PMID: 32330727 DOI: 10.1016/j.scitotenv.2020.138698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In Earth's near-surface environments, gold biogeochemical cycling involves gold dissolution and precipitation processes, which are partly attributed to bacteria. These biogeochemical processes as well as abrasion (via physical transport) are known to act upon gold particles, thereby resulting in particle transformation including the development of pure secondary gold and altered morphology, respectively. While previous studies have inferred gold biogeochemical cycling from gold particles obtained from natural environments, little is known about how metal contamination in an environment could impact this cycle. Therefore, this study aims to infer how potentially toxic metal contaminants could affect the structure and chemistry of gold particles and therefore the biogeochemical cycling of gold. In doing so, river sediments and gold particles from the De Kaap Valley, South Africa, were analysed using both microanalytical and molecular techniques. Of the metal contaminants detected in the sediment, mercury can chemically interact with gold particles thereby directly altering particle morphology and "erasing" textural evidence indicative of particle transformation. Other metal contaminants (including mercury) indirectly affect gold cycling by exerting a selective pressure on bacteria living on the surface of gold particles. Particles harbouring gold-tolerant bacteria with diverse metal resistant genes, such as Arthrobacter sp. and Pseudomonas sp., contained nearly two times more secondary gold relative to particles harbouring bacteria with less gold-tolerance. In conclusion, metal contaminants can have a direct or indirect effect on gold biogeochemical cycling in natural environments impacted by anthropogenic activity.
Collapse
Affiliation(s)
- Santonu Kumar Sanyal
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Joël Brugger
- Monash University, Clayton, Victoria 3800, Australia
| | | | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Roger Dixon
- University of Pretoria, Pretoria 0001, South Africa
| | - Rick Tearle
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Davies Research Centre, School of Animal & Veterinary Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Frank Reith
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Jeremiah Shuster
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
14
|
Sanyal SK, Reith F, Shuster J. A genomic perspective of metal-resistant bacteria from gold particles: Possible survival mechanisms during gold biogeochemical cycling. FEMS Microbiol Ecol 2020; 96:5851273. [DOI: 10.1093/femsec/fiaa111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
A bacterial consortium was enriched from gold particles that ‘experienced’ ca. 80 years of biotransformation within waste-rock piles (Australia). This bacterial consortium was exposed to 10 µM AuCl3 to obtain Au-tolerant bacteria. From these isolates, Serratia sp. and Stenotrophomonas sp. were the most Au-tolerant and reduced soluble Au as pure gold nanoparticles, indicating that passive mineralisation is a mechanism for mediating the toxic effect of soluble Au produced during particle dissolution. Genome-wide analysis demonstrated that these isolates also possessed various genes that could provide cellular defence enabling survival under heavy-metal stressed condition by mediating the toxicity of heavy metals through active efflux/reduction. Diverse metal-resistant genes or genes clusters (cop, cus, czc, zntand ars) were detected, which could confer resistance to soluble Au. Comparative genome analysis revealed that the majority of detected heavy-metal resistant genes were similar (i.e. orthologous) to those genes of Cupriavidus metallidurans CH34. The detection of heavy-metal resistance, nutrient cycling and biofilm formation genes (pgaABCD, bsmAandhmpS) may have indirect yet important roles when dealing with soluble Au during particle dissolution. In conclusion, the physiological and genomic results suggest that bacteria living on gold particles would likely use various genes to ensure survival during Au-biogeochemical cycling.
Collapse
Affiliation(s)
- Santonu Kumar Sanyal
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| | - Frank Reith
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| | - Jeremiah Shuster
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
15
|
Rana S, Mishra P, Wahid ZA, Thakur S, Pant D, Singh L. Microbe-mediated sustainable bio-recovery of gold from low-grade precious solid waste: A microbiological overview. J Environ Sci (China) 2020; 89:47-64. [PMID: 31892401 DOI: 10.1016/j.jes.2019.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.
Collapse
Affiliation(s)
- Supriyanka Rana
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Puranjan Mishra
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Zularisam Ab Wahid
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia; Earth Resources and Sustainability Center (EARS), Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia.
| | - Sveta Thakur
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Lakhveer Singh
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia; Earth Resources and Sustainability Center (EARS), Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
16
|
Mazhar SH, Herzberg M, Ben Fekih I, Zhang C, Bello SK, Li YP, Su J, Xu J, Feng R, Zhou S, Rensing C. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine. Front Microbiol 2020; 11:47. [PMID: 32117100 PMCID: PMC7019866 DOI: 10.3389/fmicb.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
The highly heavy metal resistant strain Cupriavidus metallidurans BS1 was isolated from the Zijin gold–copper mine in China. This was of particular interest since the extensively studied, closely related strain, C. metallidurans CH34 was shown to not be only highly heavy metal resistant but also able to reduce metal complexes and biomineralizing them into metallic nanoparticles including gold nanoparticles. After isolation, C. metallidurans BS1 was characterized and complete genome sequenced using PacBio and compared to CH34. Many heavy metal resistance determinants were identified and shown to have wide-ranging similarities to those of CH34. However, both BS1 and CH34 displayed extensive genome plasticity, probably responsible for significant differences between those strains. BS1 was shown to contain three prophages, not present in CH34, that appear intact and might be responsible for shifting major heavy metal resistance determinants from plasmid to chromid (CHR2) in C. metallidurans BS1. Surprisingly, the single plasmid – pBS1 (364.4 kbp) of BS1 contains only a single heavy metal resistance determinant, the czc determinant representing RND-type efflux system conferring resistance to cobalt, zinc and cadmium, shown here to be highly similar to that determinant located on pMOL30 in C. metallidurans CH34. However, in BS1 another homologous czc determinant was identified on the chromid, most similar to the czc determinant from pMOL30 in CH34. Other heavy metal resistance determinants such as cnr and chr determinants, located on megaplasmid pMOL28 in CH34, were shown to be adjacent to the czc determinant on chromid (CHR2) in BS1. Additionally, other heavy metal resistance determinants such as pbr, cop, sil, and ars were located on the chromid (CHR2) and not on pBS1 in BS1. A diverse range of genomic rearrangements occurred in this strain, isolated from a habitat of constant exposure to high concentrations of copper, gold and other heavy metals. In contrast, the megaplasmid in BS1 contains mostly genes encoding unknown functions, thus might be more of an evolutionary playground where useful genes could be acquired by horizontal gene transfer and possibly reshuffled to help C. metallidurans BS1 withstand the intense pressure of extreme concentrations of heavy metals in its environment.
Collapse
Affiliation(s)
- Sohaib H Mazhar
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suleiman Kehinde Bello
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junming Su
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Reith F, Falconer DM, Van Nostrand J, Craw D, Shuster J, Wakelin S. Functional capabilities of bacterial biofilms on gold particles. FEMS Microbiol Ecol 2019; 96:5663612. [DOI: 10.1093/femsec/fiz196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
Gold particles contain gold and other toxic, heavy metals, making them ‘extreme’ geochemical microenvironments. To date, the functional capabilities of bacterial biofilms to deal with these conditions have been inferred from taxonomic analyses. The aims of this study are to evaluate the functional capabilities of bacterial communities on gold particles from six key locations using GeoChip 5.0 and to link functional and taxonomic data. Biofilm communities displayed a wide range of functional capabilities, with up to 53 505 gene probes detected. The capability of bacterial communities to (re)cycle carbon, nitrogen, and sulphur were detected. The cycling of major nutrients is important for maintaining the biofilm community as well as enabling the biogeochemical cycling and mobilisation of heavy and noble metals. Additionally, a multitude of stress- and heavy metal resistance capabilities were also detected, most notably from the α/β/γ-Proteobacteria and Actinobacteria. The multi-copper-oxidase gene copA, which is directly involved in gold resistance and biomineralisation, was the 15th most intense response and was detected in 246 genera. The Parker Road and Belle Brooke sites were consistently the most different from other sites, which may be a result of local physicochemical conditions (extreme nutrient poverty and sulphur-richness, respectively). In conclusion, biofilms on gold particles display wide-ranging metabolic and stress-related capabilities, which may enable them to survive in these niche environments and drive biotransformation of gold particles.
Collapse
Affiliation(s)
- Frank Reith
- The University of Adelaide, School of Biological Sciences, Department of Molecular and Cellular Biology, Adelaide, South Australia 5005, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Donna M Falconer
- University of Otago, Geology Department, North Dunedin, Dunedin 9016, New Zealand
| | - Joy Van Nostrand
- University of Oklahoma, Institute for Environmental Genomics and Microbiology and Plant Biology, Norman, Oklahoma 73019, United States
| | - David Craw
- University of Otago, Geology Department, North Dunedin, Dunedin 9016, New Zealand
| | - Jeremiah Shuster
- The University of Adelaide, School of Biological Sciences, Department of Molecular and Cellular Biology, Adelaide, South Australia 5005, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Steven Wakelin
- Scion, PO Box 29237, Riccarton, Christchurch 8440, New Zealand
- BioProtection Research Centre, PO Box 85084, Lincoln University, Canterbury 7647, New Zealand
| |
Collapse
|
18
|
Sanyal SK, Shuster J, Reith F. Biogeochemical gold cycling selects metal-resistant bacteria that promote gold particle transformation. FEMS Microbiol Ecol 2019; 95:5499019. [DOI: 10.1093/femsec/fiz078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/23/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Santonu Kumar Sanyal
- Department of Molecular & Biomedical Science, School of Biological Sciences,The University of Adelaide, Adelaide 5005, South Australia, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond 5064, South Australia, Australia
| | - Jeremiah Shuster
- Department of Molecular & Biomedical Science, School of Biological Sciences,The University of Adelaide, Adelaide 5005, South Australia, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond 5064, South Australia, Australia
| | - Frank Reith
- Department of Molecular & Biomedical Science, School of Biological Sciences,The University of Adelaide, Adelaide 5005, South Australia, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond 5064, South Australia, Australia
| |
Collapse
|
19
|
Draft Genome Sequence of the Phenol-Degrading Bacterium Cupriavidus sp. Strain P-10, Isolated from Trichloroethene-Contaminated Aquifer Soil. Microbiol Resour Announc 2018; 7:MRA01009-18. [PMID: 30533775 PMCID: PMC6256540 DOI: 10.1128/mra.01009-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
A batch culture was enriched on phenol with trichloroethene-contaminated aquifer soil as an inoculum. Cupriavidus sp. strain P-10 was isolated from the culture using a diluted plating method. Here, we report the draft genome sequence and annotation of strain P-10, which provides insights into the metabolic processes of phenol degradation.
Collapse
|
20
|
Reflecting on Gold Geomicrobiology Research: Thoughts and Considerations for Future Endeavors. MINERALS 2018. [DOI: 10.3390/min8090401] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Research in gold (Au) geomicrobiology has developed extensively over the last ten years, as more Au-bearing materials from around the world point towards a consistent story: That microbes interact with Au. In weathering environments, Au is mobile, taking the form of oxidized, soluble complexes or reduced, elemental Au nanoparticles. The transition of Au between aqueous and solid states is attributed to varying geochemical conditions, catalyzed in part by the biosphere. Hence, a global Au-biogeochemical-cycle was proposed. The primary focus of this mini-review is to reflect upon the biogeochemical processes that contribute to what we currently know about Au cycling. In general, the global Au-biogeochemical-cycle begins with the liberation of gold-silver particles from a primary host rock, by physical weathering. Through oxidative-complexation, inorganic and organic soluble-Au complexes are produced. However, in the presence of microbes or other reductants—e.g., clays and Fe-oxides—these Au complexes can be destabilized. The reduction of soluble Au ultimately leads to the bioprecipitation and biomineralization of Au, the product of which can aggregate into larger structures, thereby completing the Au cycle. Evidence of these processes have been “recorded” in the preservation of secondary Au structures that have been observed on Au particles from around the world. These structures—i.e., nanometer-size to micrometer-size Au dissolution and reprecipitation features—are “snap shots” of biogeochemical influences on Au, during its journey in Earth-surface environments. Therefore, microbes can have a profound effect on the occurrence of Au in natural environments, given the nutrients necessary for microbial metabolism are sustained and Au is in the system.
Collapse
|
21
|
Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities. FEMS Microbiol Ecol 2018; 94:4992300. [DOI: 10.1093/femsec/fiy080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
|