1
|
Muńko M, Ciesielska K, Pluskota-Karwatka D. New insight into the molecular mechanism of protein cross-linking induced by cis-2-butene-1,4-dial, the metabolite of furan: Formation of 2-substituted pyrrole cross-links involving the cysteine and lysine residues. Bioorg Chem 2022; 125:105852. [DOI: 10.1016/j.bioorg.2022.105852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022]
|
2
|
Bein K, Birru RL, Wells H, Larkin TP, Cantrell PS, Fagerburg MV, Zeng X, Leikauf GD. Albumin Protects Lung Cells against Acrolein Cytotoxicity and Acrolein-Adducted Albumin Increases Heme Oxygenase 1 Transcripts. Chem Res Toxicol 2020; 33:1969-1979. [PMID: 32530271 DOI: 10.1021/acs.chemrestox.0c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Albumin is an abundant protein in the lung lining fluid that forms an interface between lung epithelial cells and the external environment. In the lung, albumin can be targeted for adduction by inhaled acrolein. Acrolein, an α,β-unsaturated aldehyde, reacts with biomolecules via Michael addition at the β-carbon or Schiff base formation at the carbonyl carbon. To gain insight into acrolein's mode of action, we investigated in vitro albumin-acrolein reactivity and the consequence of albumin adduction by acrolein on cytotoxicity and transcript changes in NCI-H441 and human airway epithelial cells (HAEC). Albumin protected NCI-H441 cells from acrolein toxicity. In addition, albumin inhibited acrolein-induced increase of transcripts associated with cellular stress response, activating transcription factor 3 (ATF3), and antioxidant response, heme oxygenase 1 (HMOX1) in HAEC cells. Acrolein-adducted albumin itself increased HMOX1 transcripts but not ATF3 transcripts. The HMOX1 transcript increase was inhibited by hydralazine, a carbonyl scavenger, suggesting that the carbonyl group of acrolein-adducted albumin mediated HMOX1 transcript increase. In acutely exposed C57BL/6J mice, bronchoalveolar lavage protein carbonylation increased. Acrolein-adducted albumin Cys34 was identified by nLC-MS/MS. These findings indicate that adduction of albumin by acrolein confers a cytoprotective function by scavenging free acrolein, decreasing a cellular stress response, and inducing an antioxidant gene response. Further, these results suggest that β-carbon reactivity may be required for acrolein's cytotoxicity and ATF3 transcript increase, and the carbonyl group of acrolein-adducted albumin can induce HMOX1 transcript increase.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Theodore P Larkin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Pamela S Cantrell
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Matthew V Fagerburg
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
3
|
Kwiczak-Yiğitbaşı J, Pirat JL, Virieux D, Volle JN, Janiak A, Hoffmann M, Mrzygłód J, Wawrzyniak D, Barciszewski J, Pluskota-Karwatka D. Synthesis, structural studies and biological properties of some phosphono-perfluorophenylalanine derivatives formed by S NAr reactions. RSC Adv 2019; 9:24117-24133. [PMID: 35527881 PMCID: PMC9069932 DOI: 10.1039/c9ra03982a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/16/2019] [Indexed: 01/20/2023] Open
Abstract
Several novel phosphono-perfluorophenylalanine derivatives, as mimetics of phenylalanine, were synthesized by subjecting diethyl (2-(perfluorophenyl)-1-(phenylamino)ethyl)-phosphonate to SNAr reactions with different types of nucleophiles such as thiols, amines and phenols. The structure of the products was confirmed using spectroscopic and spectrometric techniques. For two compounds X-ray single crystal diffraction analysis and DFT investigations were performed providing information in regard to the preferable conformation, hydrogen bonds and other interactions. The antiproliferative potency of some of the new phosphono-perfluorophenylalanine derivatives obtained as well as representatives of previously synthesized perfluorophenyl phosphonate analogues of phenylalanine was studied on selected glioma cell lines. Preliminary evaluation of the compounds drug likeness was examined with respect to Lipinski's and Veber's rules, and showed that they meet the criteria perfectly. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay results demonstrated that the compounds exhibit moderate activity against the glioblastoma multiforme cell lines (T98G and U-118 MG). Moreover most of the studied SNAr reaction products displayed significantly higher inhibitory activity against both cancer cell lines than the parent diethyl (2-(perfluorophenyl)-1-(phenylamino)ethyl)phosphonate.
Collapse
Affiliation(s)
- Joanna Kwiczak-Yiğitbaşı
- Adam Mickiewicz University in Poznań, Faculty of Chemistry Umultowska 89b 61-614 Poznań Poland
- AM2N, UMR 5253, ICGM, ENSCM 8 Rue de L'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Jean-Luc Pirat
- AM2N, UMR 5253, ICGM, ENSCM 8 Rue de L'Ecole Normale 34296 Montpellier Cedex 5 France
| | - David Virieux
- AM2N, UMR 5253, ICGM, ENSCM 8 Rue de L'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Jean-Noël Volle
- AM2N, UMR 5253, ICGM, ENSCM 8 Rue de L'Ecole Normale 34296 Montpellier Cedex 5 France
| | - Agnieszka Janiak
- Adam Mickiewicz University in Poznań, Faculty of Chemistry Umultowska 89b 61-614 Poznań Poland
| | - Marcin Hoffmann
- Adam Mickiewicz University in Poznań, Faculty of Chemistry Umultowska 89b 61-614 Poznań Poland
| | - Jakub Mrzygłód
- Adam Mickiewicz University in Poznań, Faculty of Chemistry Umultowska 89b 61-614 Poznań Poland
| | - Dariusz Wawrzyniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
- NanoBioMedical Center of Adam Mickiewicz University Umultowska 85 61-614, Poznań Poland
| | | |
Collapse
|
4
|
Suchý M, Lazurko C, Kirby A, Dang T, Liu G, Shuhendler AJ. Methyl 5-MeO-N-aminoanthranilate, a minimalist fluorogenic probe for sensing cellular aldehydic load. Org Biomol Chem 2019; 17:1843-1853. [DOI: 10.1039/c8ob02255k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A minimalist fluorogenic probe is presented capable of the mapping of aldehydic load through live cell microscopy.
Collapse
Affiliation(s)
- Mojmír Suchý
- Department of Chemistry & Biomolecular Scences
- University of Ottawa
- Ottawa
- Canada
- University of Ottawa Heart Institute
| | - Caitlin Lazurko
- Department of Chemistry & Biomolecular Scences
- University of Ottawa
- Ottawa
- Canada
| | - Alexia Kirby
- Department of Biology
- University of Ottawa
- Ottawa
- Canada
- University of Ottawa Heart Institute
| | - Trina Dang
- Department of Chemistry & Biomolecular Scences
- University of Ottawa
- Ottawa
- Canada
| | - George Liu
- Department of Chemistry & Biomolecular Scences
- University of Ottawa
- Ottawa
- Canada
| | - Adam J. Shuhendler
- Department of Chemistry & Biomolecular Scences
- University of Ottawa
- Ottawa
- Canada
- University of Ottawa Heart Institute
| |
Collapse
|