1
|
Bhat AH, Chishti HTN. Adsorption of rhodamine-B by polypyrrole Sn (IV) tungstophosphate nanocomposite cation exchanger: Kinetic-cum-thermodynamic investigations. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Aabid Hussain Bhat
- Department of Chemistry, National Institute of Technology Srinagar, Srinagar, India
| | | |
Collapse
|
2
|
Ahmad N, Anae J, Khan MZ, Sabir S, Campo P, Coulon F. A novel CuBi 2O 4/polyaniline composite as an efficient photocatalyst for ammonia degradation. Heliyon 2022; 8:e10210. [PMID: 36042739 PMCID: PMC9420373 DOI: 10.1016/j.heliyon.2022.e10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 08/03/2022] [Indexed: 10/27/2022] Open
Abstract
A novel polyaniline (PANI) coupled CuBi2O4 photocatalyst was successfully synthesized via in situ polymerization of aniline with pre-synthesized CuBi2O4 composites. The structure and morphology of the synthesized CuBi2O4/PANI composite photocatalyst were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and the photocatalytic performance were evaluated through degradation process of ammonia in water under visible light irradiation. The resultant CuBi2O4/PANI composite showed exceptional stability as its structure and morphology persisted even after being immersed in water for 2 days. The composite photocatalyst exhibited improved charge transport properties due to the electrical conductivity of the PANI protective layer, leading to enhanced photoelectrochemical activity in water and removal of ammonia. PANI with CuBi2O4 (10% wt) heterostructure was applied for photodegradation of ammonia and exhibited a 96% ammonia removal efficiency (30 mg/l with 0.1 g photocatalyst and 180 min), as compared to PANI (78%) and CuBi2O4 (70%). The degradation was attributed to the efficient charge transfer (e- and h+) and formation of reactive oxygen species upon simulated sunlight exposure. The present work suggests that the CuBi2O4/PANI photocatalyst can be synthesized in a simple process and provides an excellent adsorption capacity, high photocatalytic activity, long term stability, and reusability making it a promising alternative for ammonia removal from wastewater.
Collapse
Affiliation(s)
- Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK.,Department of Chemistry, Integral University, Lucknow, India, 226026
| | - Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India, 202002
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India, 202002
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| |
Collapse
|
3
|
Ahmad N, Anae J, Khan MZ, Sabir S, Yang XJ, Thakur VK, Campo P, Coulon F. Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113362. [PMID: 34346390 DOI: 10.1016/j.jenvman.2021.113362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This review compiles recent advances and challenges on photocatalytic treatment of wastewater using nanoparticles, nanocomposites, and polymer nanocomposites as photocatalyst. The review provides an overview of the fundamental principles of photocatalytic treatment along the recent advances on photocatalytic treatment, especially on the modification strategies and operational conditions to enhance treatment efficiency and removal of recalcitrant organic contaminants. The different types of photocatalysts along the key factors influencing their performance are also critically discussed and recommendations for future research are provided.
Collapse
Affiliation(s)
- Nafees Ahmad
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK; Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jerry Anae
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Suhail Sabir
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Xiao Jin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Pablo Campo
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK 43 0AL, UK.
| |
Collapse
|
4
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
5
|
Electrochemical synthesis of novel aluminium oxyhydroxide-decorated MnO2/chitosan nanocomposite with efficient photocatalytic and antibacterial activity. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s41204-020-00083-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Mazhar S, Lawson BP, Stein BD, Pink M, Carini J, Polezhaev A, Vlasov E, Zulfiqar S, Sarwar MI, Bronstein LM. Elastomer based nanocomposites with reduced graphene oxide nanofillers allow for enhanced tensile and electrical properties. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2039-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Exploring the visible light driven photocatalysis by reduced graphene oxide supported Ppy/CdS nanocomposites for the degradation of organic pollutants. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112129] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Asar MF, Ahmad N, Husain Q. Chitosan modified Fe3O4/graphene oxide nanocomposite as a support for high yield and stable immobilization of cellulase: its application in the saccharification of microcrystalline cellulose. Prep Biochem Biotechnol 2019; 50:460-467. [DOI: 10.1080/10826068.2019.1706562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohd Faisal Asar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Nafees Ahmad
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Anwer AH, Khan MD, Khan N, Nizami AS, Rehan M, Khan MZ. Development of novel MnO 2 coated carbon felt cathode for microbial electroreduction of CO 2 to biofuels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109376. [PMID: 31437708 DOI: 10.1016/j.jenvman.2019.109376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Fabrication of superior and cost-effective cathodic materials is vital in manufacturing sustainable microbial electrolysis cells (MECs) for biofuels production. In the present study, a novel manganese dioxide (MnO2) coated felt cathode (Mn/CF) has been developed for MECs using electrodeposition method via potentiostat. MnO2 is considered to encourage exogenous electron exchange and, in this way, improves the reduction of carbon dioxide (CO2). MnO2, as a cathodic catalyst, enhances the rate of biofuel production, electron transfer, and significantly reduces the cost of MECs. A maximum stabilized current density of 3.70 ± 0.5 mA/m2 was obtained in case of MnO2-coated Mn/CF based MEC, which was more than double the non-coated carbon felt (CF) cathode (1.70 ± 0.5 mA/m2). The dual chamber Mn/CF-MEC achieved the highest production rate of acetic acid (37.9 mmol/L) that was significantly higher (43.0%) in comparison to the non-coated CF-MEC. The cyclic voltammograms further verified the substantial enhancement in the electron transfer between the MnO2 coated cathode and microbes. The obtained results demonstrate that MnO2 interacted electrochemically with microbial cells and enhanced the extracellular electron transfer, therefore validating its potential role in biofuel production. The MnO2 coated CF further offered higher electrode surface area and better electron transfer efficiency, suggesting its applicability in the large-scale MECs.
Collapse
Affiliation(s)
- A H Anwer
- Environmental Research Laboratory, Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - M D Khan
- Environmental Research Laboratory, Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, 202002, India; School of Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - N Khan
- Environmental Research Laboratory, Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - A S Nizami
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia.
| | - M Rehan
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Z Khan
- Environmental Research Laboratory, Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
10
|
Kumari P, Pathak G, Gupta R, Sharma D, Meena A. Cellulose nanofibers from lignocellulosic biomass of lemongrass using enzymatic hydrolysis: characterization and cytotoxicity assessment. ACTA ACUST UNITED AC 2019; 27:683-693. [PMID: 31654377 DOI: 10.1007/s40199-019-00303-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The lemongrass (LG) leaves could be a useful source of cellulose after its oil extraction, which is still either dumped or burned, not considered as a cost-effective approach. The synthesis of cellulose nanofibers (CNF) from LG waste has emerged as a beneficial alternative in the value-added applications. The non-toxicity, biodegradability, and biocompatibility of CNF have raised the interest in its manufacturing. METHOD In the present study, we have isolated and characterized CNFs using enzymatic hydrolysis. We also explored the cytotoxic properties of the final material. The obtained products were characterized using dynamic light scattering (DLS), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and thermogravimetric/differential thermal gravimetric analysis (TG/DTG). The cytotoxicity of CNF was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay against three different cancer cell lines NCIH460, PA1, and L132 cells. RESULTS The FT-IR results showed that the resulting sample was of cellulose species, and CNF was found free from the non-cellulosic components like lignin and hemicellulose. The SEM micrographs of the cellulose showed a bundle like structure. The TEM micrographs of CNF showed diverse long fibers structure with 105.7 nm particle size analysed using DLS. The TGA analysis revealed that the thermal stability was slightly lower, compared to cellulose. Additionally, CNF did not show the cytotoxic effect at the tested concentrations (~10-1000 μg/ml) in any of the cell lines. CONCLUSION Overall, the results concluded that LG waste-derived CNF is a potential sustainable material and could be employed as a favourable reinforcing agent or nanocarriers in diverse areas, mainly in food and drug delivery sectors. Graphical abstract Systematic representation of the synthesis of the cellulose nanofibers: The lignocellulosic waste of lemongrass (after oil extraction) was pretreated for the isolation of raw cellulose, followed by enzyme hydrolysis for the synthesis of pure cellulose nanofibers.
Collapse
Affiliation(s)
- Priyanka Kumari
- Molecular Bioprospection Department, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, Uttar Pradesh, 226 015, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gauri Pathak
- Molecular Bioprospection Department, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, Uttar Pradesh, 226 015, India
| | - Ruby Gupta
- Institute of Nano Science and Technology, Habitat Centre, Sector-64, Phase-X, Mohali, Punjab, 160062, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Habitat Centre, Sector-64, Phase-X, Mohali, Punjab, 160062, India
| | - Abha Meena
- Molecular Bioprospection Department, Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow, Uttar Pradesh, 226 015, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Ahmad N, Sultana S, Faisal SM, Ahmed A, Sabir S, Khan MZ. Zinc oxide-decorated polypyrrole/chitosan bionanocomposites with enhanced photocatalytic, antibacterial and anticancer performance. RSC Adv 2019; 9:41135-41150. [PMID: 35540086 PMCID: PMC9076406 DOI: 10.1039/c9ra06493a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
A bio-nanocomposite matrix of polypyrrole grafted ZnO/chitosan (Ppy/C/Z) was synthesized via the in situ polymerization of pyrrole with different weight fractions of ZnO. Incorporation of ZnO nanoparticles with polypyrrole enhances the photocatalytic, antibacterial as well as cytotoxic properties of the resultant composite. Characterizations of the synthesized product were performed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermal analysis (TGA and DTA). Surface morphology and particle size were determined by SEM and TEM. The elemental composition of the material was studied by EDX coupled with SEM. Electrochemical surface area was calculated from electrochemical double layer capacitance (EDLC) measurements using cyclic voltammetry. The photocatalytic activity of the composite material was tested by monitoring the degradation of reactive orange-16 (RO-16), Coomassie Brilliant Blue R-250 (CBB-R-250) and Methylene Blue (MB) dyes and the composite was found to be an effective catalyst in the presence of a UV light source. Various scavengers were used to detect the reactive species involved in the photocatalytic process. Furthermore, the stability of the photocatalyst was assessed by recycling experiments. Moreover, the Ppy/C/Z bio-nanocomposite shows potential application with anti-bacterial and anti-cancer activity against Gram-positive and Gram-negative bacterial pathogens and human cancer cell lines (HeLa and MCF-7). The experimental data confirm that the bio-nanocomposite of Ppy/C/Z showed excellent anti-bacterial and anti-cancer activity as compared to a pristine polypyrrole and chitosan formulation (Ppy/C). The apoptosis data with varying concentrations of Ppy/C/Z reveal the remarkable activity against these cancer cell lines. Bio-nanocomposites were synthesized via grafting polypyrrole/ZnO onto chitosan chain for the photodegradation of organic pollutants and biomedical applications.![]()
Collapse
Affiliation(s)
- Nafees Ahmad
- Environmental Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Saima Sultana
- Environmental Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Anees Ahmed
- Hybridoma Laboratory
- National Institute of Immunology
- New Delhi
- India
| | - Suhail Sabir
- Environmental Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohammad Zain Khan
- Environmental Research Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
12
|
Ali M, Husain Q, Sultana S, Ahmad M. Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye. CHEMOSPHERE 2018; 202:198-207. [PMID: 29571140 DOI: 10.1016/j.chemosphere.2018.03.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/03/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
In the present study novel polypyrrole-cellulose-graphene oxide nanocomposite (PCeGONC) was employed for the immobilization of ginger peroxidase (GP) via simple adsorption mechanism. Immobilization of enzyme on the obtained support resulted in enhancement of the enzyme activity. The recovery of activity was 128% of the initial activity. Consequently, in 3 h stirred batch treatment, PCeGONC bound GP exhibited higher decolorization efficiency (99%) for Reactive Blue 4 (RB 4) dye as compared to free GP (88%). The immobilized GP exhibited higher operational stability and retained approximately 72% of its initial activity even after ten sequential cycles of dye decolorization in batch process. The kinetic characterization of PCeGONC bound GP revealed slightly lower Km and 3.3 times higher Vmax compared to free GP. Degraded products were identified on the basis of GC-MS analysis and degradation pathway was proposed accordingly which confirms enzymatic breakdown of RB 4 into low molecular weight compounds. Genotoxic assessment of GP treated RB 4 revealed significant reduction of its genotoxic potential. In-silico analysis identified that binding site of PCeGONC on enzyme is distinct and lies far away from the active site of the enzyme. Furthermore, it also revealed higher affinity of 1-hydroxybenzotriazole (a redox mediator) and RB 4 for PCeGONC bound enzyme as compared to the free enzyme. This is in consensus with the observed decrease in Km of the immobilized GP.
Collapse
Affiliation(s)
- Misha Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP, India.
| | - Saima Sultana
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, 202002 UP, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP, India
| |
Collapse
|
13
|
Mo M, Chen C, Gao H, Chen M, Li D. Wet-spinning assembly of cellulose nanofibers reinforced graphene/polypyrrole microfibers for high performance fiber-shaped supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.118] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|