1
|
Sarkar P, Sarkar S, Nayek A, Adarsh NN, Pal AK, Datta A, Dey A, Ghosh P. Low Potential CO 2 Reduction by Inert Fe(II)-Macrobicyclic Complex: A New Concept of Cavity Assisted CO 2 Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304794. [PMID: 37888827 DOI: 10.1002/smll.202304794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Indexed: 10/28/2023]
Abstract
The advantage of a pre-organized π-cavity of Fe(II) complex of a newly developed macrobicycle cryptand is explored for CO2 reduction by overcoming the problem of high overpotential associated with the inert nature of the cryptate. Thus, a bipyridine-centered tritopic macrobicycle having a molecular π-cavity capable of forming Fe(II) complex as well as potential for CO2 encapsulation is synthesized. The inert Fe(II)-cryptate shows much lower potential in cyclic voltammetry than the Fe(II)-tris-dimethylbipyridine (Fe-MBP) core. Interestingly, this cryptate shows electrochemical CO2 reduction at a considerably lower potential than the Fe-MBP inert core. Therefore, this study represents that a well-structured π-cavity may generate a new series of molecular catalysts for the CO2 reduction reaction (CO2 RR), even with the inert metal complexes.
Collapse
Affiliation(s)
- Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
- Institute of Health Sciences, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata, West Bengal, 700156, India
| | - Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Nayarassery N Adarsh
- Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| |
Collapse
|
2
|
Ma Y, Chen J, Du X, Xie C, Zhou J, Tao X, Dang Z, Lu G. Efficient removal of polybrominated diphenyl ethers from soil washing effluent by dummy molecular imprinted adsorbents: Selectivity and mechanisms. J Environ Sci (China) 2023; 129:45-57. [PMID: 36804241 DOI: 10.1016/j.jes.2022.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/18/2023]
Abstract
Surfactant enhanced elution is an effective method for removing hydrophobic organic pollutants from soils. The key to the development of leaching technology is selective removal of targeted pollutants in soil washing effluent and recycling of surfactant solutions. In this study, a molecular imprinting technique was applied to selectively sorb polybrominated diphenyl ethers (PBDEs) in soil washing effluent. The novel molecular imprinted polymers (MIPs) using different template molecules were synthesized by precipitation polymerization. Adsorption behaviors and mechanisms of MIPs were studied through experiments and theoretical calculations. The results show that 4-bromo-4'-hydroxybiphenyl and toluene can be effective imprinting molecule for MIPs synthesis. The maximal adsorption capacity of selected dummy molecular imprinted polymer (D1-MIP) was 1032.36 µmol/g, and that of part molecular imprinted polymer (P-MIP) was 981.13 µmol/g. Their imprinting factors in 5 PBDEs adsorption ranged from 2.13 to 5.88, the recovery percentage of Triton X-100 can reach 99.09%, confirming the feasibility of reusing surfactant. Various PBDEs could be removed by MIPs, and Quantitative Structure Property Relationship analysis revealed that PBDEs' molecular volume, planarity, polarity, and hydrophobicity have major influences on their adsorption performance. DFT calculation revealed that Van der Waals force and hydrogen bonding played important roles during selective adsorption. These results can provide effective theoretical guidance for surfactant enhanced soil elution in practical engineering applications.
Collapse
Affiliation(s)
- Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinfan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunsheng Xie
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China.
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
3
|
Benaïssa A, Bouhadiba A, Naili N, Chekkal F, Khelfaoui M, Bouras I, Madjram MS, Zouchoune B, Mogalli S, Malfi N, Nouar L, Madi F. Computational investigation of dimethoate and β-cyclodextrin inclusion complex: molecular structures, intermolecular interactions, and electronic analysis. Struct Chem 2023. [DOI: 10.1007/s11224-023-02162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Jia D, Miao W, Rui Y, Chen Y, Liang W, Yi Z. Thyroid hormone transporters binding affinity of methoxypoly chlorinated biphenyls: Insights from molecular simulations and fluorescence competitive binding experiment. Int J Biol Macromol 2023; 231:123224. [PMID: 36649871 DOI: 10.1016/j.ijbiomac.2023.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Triiodothyronine (T3) and thyroxine (T4) are essential for regulating cell metabolic rate and promoting the development and differentiation of brain tissue, especially in fetuses and newborns. In particular, it has been proved that MeO-PCBs have high binding to thyroid hormone transporters and can competitively bind to thyroid carrier proteins, thus destroying the transport of the thyroid hormone. Fluorescence competition binding experiments and docking results showed that the binding affinity decreased with the increase in number of chlorine atoms of MeO-PCBs. The interaction mechanism of MeO-PCBs with thyroid transporter (TTR) and thyroid binding globulin (TBG) was compared by computational simulation and the binding free energies were calculated by the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. Electrostatic potential analysis, Hirshfeld surface analysis and electron density difference maps confirmed the existence of electrostatic interactions. Secondly, noncovalent interaction (NCI) analysis further indicated that the main driving force for the combination of MeO-PCBs to TTR and TBG were electrostatic interaction and van der Waals interaction. The conformational changes of the protein after binding were studied by a molecular dynamic simulation.
Collapse
Affiliation(s)
- Dan Jia
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wangli Miao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuefan Rui
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yanting Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wenhui Liang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
5
|
Leyla C, Fatiha M, Leila N, Rabah O. Solubility and Antioxidant Activity of 1,2-Dihydro-2-Methyl-2-Phenyl-3H-Indole-3-One-1-Oxyl Hosted at Randomly Methylated-Βétacyclodextrin: A Computational Investigation. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2146148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Chekatti Leyla
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Computational Chemistry and Nanostructures, University of 8 Mai 1945, Guelma, Algeria
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Industrial Analysis and Materials Engineering, University of 8 Mai 1945, Guelma, Algeria
| | - Madi Fatiha
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Computational Chemistry and Nanostructures, University of 8 Mai 1945, Guelma, Algeria
| | - Nouar Leila
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Computational Chemistry and Nanostructures, University of 8 Mai 1945, Guelma, Algeria
| | - Oumeddour Rabah
- Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, Laboratory of Industrial Analysis and Materials Engineering, University of 8 Mai 1945, Guelma, Algeria
| |
Collapse
|
6
|
Sarmah K, Purkayastha SK, Kalita AJ, Guha AK. An in silico study of the selective adsorption and separation of CO 2 from a flue gas mixture (CH 4, CO 2, N 2) by ZnLi 5+ clusters. Phys Chem Chem Phys 2023; 25:5174-5182. [PMID: 36723082 DOI: 10.1039/d2cp05838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Due to the increasing concentration of CO2 in the atmosphere and its negative effect on the environment, selective adsorption of CO2 from flue gas has become significantly important. In this study, we have considered a Zn-doped lithium cluster, ZnLi5+ cluster, featuring a planar pentacoordinate Zn centre, as a potential candidate for selective CO2 capture and separation from a flue gas mixture (CH4, CO2, N2). The binding energy calculation and non-covalent interaction study showed that CO2 molecules bind relatively strongly as compared to N2 and CH4 molecules. The metal cluster can bind five CO2, five CH4, and four N2 molecules with average binding energies of -9.2, -4.4, and -6.1 kcal mol-1, respectively. Decomposition of the binding energy through symmetry-adapted perturbation theory analysis reveals that the electrostatic component plays a major role. The cationic cluster may be a promising candidate for selective CO2 capture and can be used as a pollution-controlling agent. The calculated adsorption energy of H2S is quite closer to that of CO2, suggesting competitive adsorption between CO2 and H2S. The adsorption energies of H2O and NH3 are higher compared to CO2, indicating that these gases may be a potential threat to CO2 capture.
Collapse
Affiliation(s)
- Kangkan Sarmah
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| | | | - Amlan J Kalita
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| |
Collapse
|
7
|
Surface functionalization of Si6Li6 cluster with superalkalis to achieve high nonlinear optical response: A DFT study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Wu X, Shen J, Cao H, Yuan M, Ye T, Lin C, Zhang C, Xu F. Theoretical sight into hydrogen bond interactions between arsenious acid and thiols in aqueous and HEPES solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Qayyum M, Bushra T, Khan ZA, Gul H, Majeed S, Yu C, Farooq U, Shaikh AJ, Shahzad SA. Synthesis and Tetraphenylethylene-Based Aggregation-Induced Emission Probe for Rapid Detection of Nitroaromatic Compounds in Aqueous Media. ACS OMEGA 2021; 6:25447-25460. [PMID: 34632203 PMCID: PMC8495881 DOI: 10.1021/acsomega.1c03439] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 05/27/2023]
Abstract
Tetraphenylethylene (TPE) can be used to construct fluorescent probes with typical aggregation-induced emission (AIE) behavior for next-generation sensing applications. McMurry coupling and Suzuki cross coupling strategies provided the desired sensor thiophene-substituted tetraphenylethylene (THTPE). The synthesized TPE analogues were characterized by NMR spectroscopy and mass spectrometry. Maximum AIE of THTPE was observed in 90% water (H2O/THF) content due to extensive formation of aggregates. The AIE properties of THTPE have been utilized for facile detection of nitroaromatic compounds (NACs) (1.0 nM) through a fluorescence quenching mechanism. A paper strip adsorbed with the AIE-based THTPE fluorophore is developed for rapid and convenient detection of NAC-based analytes. Further, interaction of THTPE with analytes is also studied via Gaussian software at the DFT/B3LYP/6-31G(d) level of theory. Interaction energy, frontier molecular orbitals (FMOs), and non-covalent interaction (NCI) analyses are studied by using the same method. Computational results revealed that nitrobenzene (NB) has the strongest interaction while 1,3-dinitrobenzene (DNB) exhibits the least interaction with the sensor molecule. These computational results clearly demonstrate good agreement with experimental data.
Collapse
Affiliation(s)
- Mehwish Qayyum
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Tayyaba Bushra
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Hira Gul
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Shumaila Majeed
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Cong Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Changchun 130022, PR China
- University
of Science and Technology of China, Hefei 230026, PR China
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
10
|
Li ZH, Yang HL, Wei TB, Lin Q. Investigation of the assembly mechanism of N1, N4-di (pyridin-4-yl) terephthalamide with pillar[5]arene: Experiment and quantum chemical study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Effective adsorption of A-series chemical warfare agents on graphdiyne nanoflake: a DFT study. J Mol Model 2021; 27:117. [PMID: 33796926 DOI: 10.1007/s00894-021-04730-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Chemical warfare agents (CWAs) are highly poisonous and their presence may cause diverse effects not only on living organisms but also on environment. Therefore, their detection and removal in a short time span is very important. In this regard, here the utility of graphdiyne (GDY) nanoflake is studied theoretically as an electrochemical sensor material for the hazardous CWAs including A-230, A-232, and A-234. Herein, we explain the phenomenon of adsorption of A-series CWAs on GDY nanoflake within the density functional theory (DFT) framework. The characterisation of adsorption is based on optimised geometries, BSSE-corrected energies, SAPT0, RDG, FMO, CHELPG charge transfer, QTAIM and UV-Vis analyses. The calculated counterpoise adsorption energies for reported complexes range from - 13.70 to - 17.19 kcal mol-1. These adsorption energies show that analytes are physiosorbed onto GDY which usually takes place through noncovalent interactions. The noncovalent adsorption of CWAs on GDY is also attributed by the SAPT0, RDG and QTAIM analyses. These properties also reveal that dispersion factors dominate in the complexes among many noncovalent components (exchange, induction, electrostatic, steric and repulsion). In order to estimate the sensitivity of GDY, the %sensitivity and average energy gap variations are quantitatively measured by energies of HOMO and LUMO orbitals. In terms of adsorption affinity of GDY, UV-Vis analysis, CHELPG charge transfer and DOS analyses depict an appreciable response towards these toxic CWAs. Graphical abstract.
Collapse
|
12
|
Wakchaure P, Ganguly B. Computational Study on Metal-Ion-Decorated Prismane Molecules for Selective Adsorption of CO 2 from Flue Gas Mixtures. ACS OMEGA 2020; 5:31146-31155. [PMID: 33324823 PMCID: PMC7726950 DOI: 10.1021/acsomega.0c04299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Selective adsorption of CO2 from flue gas is extremely significant because of its increasing concentration in air and its deleterious effect on the environment. In this work, we have explored metal-ion-bound prismane molecules for selective CO2 adsorption from the flue gas mixture. The Ca2+-bound prismane complex exhibits superior CO2 selectivity and adsorption capacity. The calculated binding energy and molecular electrostatic potential (MESP) analysis showed that the rectangular face of prismane binds strongly with metal ions as compared to its triangular face. The CBS-QB3 and density functional theory-based functional M06-2X/6-311+G(d) calculations show that the prismane molecule can bind to one Li+, K+, Mg2+, and Ca2+ ion with favorable binding energy. The metal-ion-bound prismane complexes have been examined for their CO2, N2, and CH4 adsorption capacity. Prismane-Ca2+ can bind with six CO2 molecules strongly with an average binding energy of -18.1 kcal/mole as compared to six N2 (-12.6) and five CH4 (-13.4) gas molecules. The gravimetric density calculated for the CO2-adsorbed prismane-Ca2+ complex has been found to be 69.1 wt %. The discrete hydrocarbon structure for selective separation of CO2 is rare in the literature and can have potential applications for cost-effective CO2 capture from the flue gas mixture.
Collapse
Affiliation(s)
- Padmaja
D. Wakchaure
- Computation
and Simulation Unit (Analytical Discipline and Centralized Instrument
Facility), CSIR−Central Salt and
Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Bishwajit Ganguly
- Computation
and Simulation Unit (Analytical Discipline and Centralized Instrument
Facility), CSIR−Central Salt and
Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
13
|
High sensitivity of graphdiyne nanoflake toward detection of phosgene, thiophosgene and phosogenoxime; a first-principles study. J Mol Graph Model 2020; 100:107658. [DOI: 10.1016/j.jmgm.2020.107658] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 11/24/2022]
|
14
|
Imane D, Leila N, Fatiha M, Abdelkrim G, Mouna C, Ismahan L, Abdelazize B, Brahim H. Investigation of intermolecular interactions in inclusion complexes of pyroquilon with cucurbit[n]urils (n = 7,8) using DFT-D3 correction dispersion. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Sajid H, Ullah F, Ayub K, Mahmood T. Cyclic versus straight chain oligofuran as sensor: A detailed DFT study. J Mol Graph Model 2020; 97:107569. [PMID: 32120236 DOI: 10.1016/j.jmgm.2020.107569] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022]
Abstract
This study presents a novel approach for exploring the sensitivity and selectivity of cyclic oligofuran (5/6/7CF) toward gaseous analytes and their comparison with straight chain analogues (5/6/7SF). The work is not only vital to understand the superior sensitivity but also for rational design of new sensors based on cyclic ring structures of oligofuran. Interaction of cyclic and straight chain oligofuran with NH3, CO, CO2, N2H4, HCN, H2O2, H2S, CH4, CH3OH, SO2, SO3 and H2O analytes is studied via DFT calculation at B3LYP-D3/6-31++G (d, p) level of theory. The sensitivity and selectivity are illustrated by the thermodynamic parameters (Ebind, SAPT0 energies, NCI analysis), electronic properties (H-L gap, percentage of average energy gap, CHELPG charge transfer, DOS spectra), and UV-Vis analysis. All these properties are simulated at B3LYP/6-31G (d) level of theory while UV-Vis is calculated at TD-DFT method. Cyclic oligofurans have high binding energies with analytes compared to 5/6/7SF which corresponds to higher sensitivity of 5/6/7CF. Furthermore, the cyclization of oligofuran significantly improves the sensitivity and selectivity of the system. Alteration in electronic properties of 5/6/7CF and 5/6/7SF is remarkably high upon complexation with SO2 and SO3. Further the stability of rings (5, 6 and 7 membered cyclic oligofurans) and their SO3 complexes is also confirmed by molecular dynamics calculations. The findings of the work clearly suggest that the cyclic geometry enhances not only sensitivity but also selectivity of conducting polymers (oligofuran).
Collapse
Affiliation(s)
- Hasnain Sajid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Faizan Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
16
|
Wakchaure PD, Ganguly B. Probing the bent bonds in cyclopropane systems for gas storage and separation process: A computational study. J Comput Chem 2020; 41:1271-1284. [PMID: 32064637 DOI: 10.1002/jcc.26174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/01/2020] [Indexed: 11/07/2022]
Abstract
The hydrogen, carbon dioxide, and carbon monoxide gas adsorption and storage capacity of lithium-decorated cyclopropane ring systems were examined with quantum chemical calculations at density functional theory, DFT M06-2X functional using 6-31G(d) and cc-pVDZ basis sets. To examine the reliability of M06-2X DFT functional, a few representative systems are also examined with complete basis set CBS-QB3 method and CCSD-aug-cc-pVTZ level of theory. The cyclopropane systems can bind to one Li+ ion; however, the corresponding the methylated systems can bind with two Li+ ions. The cyclopropane systems can adsorb six hydrogen molecules with an average binding energy of 3.8 kcal/mol. The binding free energy (ΔG) values suggest that the hydrogen adsorption process is feasible at 273.15 K. The calculation of desorption energies indicates the recyclable property of gas adsorbed complexes. The same number of CO2 and CO gas molecules can also be adsorbed with an average binding energy of -14.4 kcal/mol and -10.7 kcal/mol, respectively. The carbon dioxide showed ~3-4 kcal/mol better binding energy as compared to carbon monoxide and hence such designed systems can function as a potential candidate for the separation of these flue gas molecules. The nature of interactions in complexes was examined with atoms in molecules analysis revealed the electrostatic nature for the interaction of Li+ ion with cyclopropane rings. The chemical hardness and electrophilicity calculations showed that the gas adsorbed complexes are rigid and therefore robust as gas storage materials.
Collapse
Affiliation(s)
- Padmaja D Wakchaure
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India
| |
Collapse
|
17
|
Wang X, Chen RX, Sue ACH, Zuilhof H, Aquino AJ, Lischka H. Introduction of polar or nonpolar groups at the hydroquinone units can lead to the destruction of the columnar structure of Pillar[5]arenes. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Sajid H, Ayub K, Mahmood T. A comprehensive DFT study on the sensing abilities of cyclic oligothiophenes (nCTs). NEW J CHEM 2019. [DOI: 10.1039/c9nj01894h] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear conducting polymers are extensively studied as sensors for various analytes, whereas studies on cyclic analogues are limited.
Collapse
Affiliation(s)
- Hasnain Sajid
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| | - Khurshid Ayub
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| | - Tariq Mahmood
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| |
Collapse
|
19
|
Venkataramanan NS, Suvitha A, Kawazoe Y. Unravelling the nature of binding of cubane and substituted cubanes within cucurbiturils: A DFT and NCI study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Venkataramanan NS, Suvitha A. Nature of bonding and cooperativity in linear DMSO clusters: A DFT, AIM and NCI analysis. J Mol Graph Model 2018. [PMID: 29524753 DOI: 10.1016/j.jmgm.2018.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study aims to cast light on the nature of interactions and cooperativity that exists in linear dimethyl sulfoxide (DMSO) clusters using dispersion corrected density functional theory. In the linear DMSO, DMSO molecules in the middle of the clusters are bound strongly than at the terminal. The plot of the total binding energy of the clusters vs the cluster size and mean polarizabilities vs cluster size shows an excellent linearity demonstrating the presence of cooperativity effect. The computed incremental binding energy of the clusters remains nearly constant, implying that DMSO addition at the terminal site can happen to form an infinite chain. In the linear clusters, two σ-hole at the terminal DMSO molecules were found and the value on it was found to increase with the increase in cluster size. The quantum theory of atoms in molecules topography shows the existence of hydrogen and SO⋯S type in linear tetramer and larger clusters. In the dimer and trimer SO⋯OS type of interaction exists. In 2D non-covalent interactions plot, additional peaks in the regions which contribute to the stabilization of the clusters were observed and it splits in the trimer and intensifies in the larger clusters. In the trimer and larger clusters in addition to the blue patches due to hydrogen bonds, additional, light blue patches were seen between the hydrogen atom of the methyl groups and the sulphur atom of the nearby DMSO molecule. Thus, in addition to the strong H-bonds, strong electrostatic interactions between the sulphur atom and methyl hydrogens exists in the linear clusters.
Collapse
Affiliation(s)
| | - Ambigapathy Suvitha
- Department of Chemistry, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613 401, India
| |
Collapse
|
21
|
Mohanty B, Venkataramanan NS. Tetracyclo(9-methyl-2,7-carbazole) as a promising nanohoop for gas trapping: a multiscale study. NEW J CHEM 2018. [DOI: 10.1039/c8nj04726j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2S, CS2, NO2, Br2, HF, and C2H6 are the ideal adsorbates within the TCC host from their respective congeners.
Collapse
Affiliation(s)
- Biswajit Mohanty
- School of Chemistry and Biotechnology
- SASTRA Deemed University
- Thanjavur
- India
| | | |
Collapse
|